TQS 124

Autumn 2007

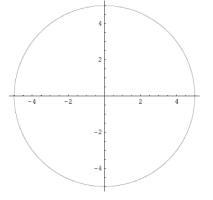
Calculus & Analytic Geometry I

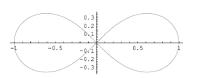
Implicit Differentiation

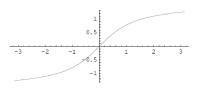
Sometimes we are faced with equations that *imply* a relation between two variables.

$$x^{2} + y^{2} = 25$$
 $(x^{2} + y^{2})^{2} = x^{2} - y^{2}$ $x = \tan(y)$

Sometimes we can solve for y in terms of x and sometimes we can't. But we can still ask about the rate of change of y with respect to x. We treat y as a function of x and use the chain rule.







TQS 124

Autumn 2007

Calculus & Analytic Geometry I

Derivatives of Inverse Functions

The chain rule is a powerful differentiation tool. It helps us determine slopes of

• composition of functions Find $\frac{d}{dx} \sec^2(x)$.

• parametric functions Suppose $x(t) = 2t^2 + 3$ and $y(t) = t^4$. Find $\frac{dy}{dx}$ at t = -1.

• implicitly defined functions Find $\frac{dr}{d\theta}$ if $e^{r^2\theta} = 2r + 2\theta$.

- inverse functions—as we shall see today.
- Find the derivative of $\ln(x)$ by differentiating the identity $e^{\ln(x)} = x$.

Problem. Find derivatives for the following functions:

 $y = \ln(\sec x)$ $y = \ln[t(t+1)(t+2)(t+3)]$

Logarithmic differentiation. When you need to find a derivative involving lots of products or quotients, sometimes taking a logarithm first can help.

Find derivative of $y = \frac{\theta \sin \theta}{\sqrt{\sec \theta}}$.

Find the derivative of $f^{-1}(x)$ in terms of f'(x) by differentiating the identity $f(f^{-1}(x)) = x$.

Check yourself. Assume that f(x) and g(x) are inverse functions and

What is g(7)? Find g'(-2).

Final Note. For a > 0 and u a differentiable function of x, $\frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$ and $\frac{d}{dx} \log_a u = \frac{1}{u \ln a} \frac{du}{dx}$.