Autumn 2007

Calculus & Analytic Geometry I

The Extremes

We are beginning Chapter 4: Applications of Differentiation. Today we examine the maximum and minimum values of functions (a.k.a. the extremes).

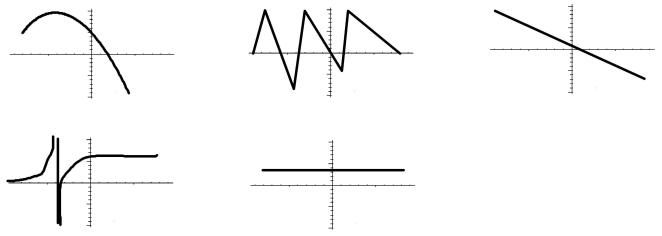
Definition. A function f with Domain D has an absolute (global) maximum at c if

 $f(x) \leq f(c)$ for all x in D

and an *absolute (global) minimum* at c if

$$f(x) \ge f(c)$$
 for all x in D .

The extreme value theorem says that a continuous function on a closed interval always has both an absolute maximum M and an absolute minimum m.



Definition. A function f with Domain D has a *local maximum* at c if

 $f(x) \leq f(c)$ for all x in some open interval containing c

and an *local minimum* at c if

 $f(x) \ge f(c)$ for all x in an open interval containing c.

What characteristics do extremes have?

Definition. A critical point is a point in the of the domain of a function f where either

- f' is zero, or
- f' is undefined.

Critical points are candidates for local extremes. Critical points and endpoints are candidates for global extremes.

Problems.

1. Find the absolute maximum and minimum value for $g(x) = xe^{-x}$ on the interval $-1 \le x \le 1$.

2. Find the absolute maximum and minimum value for h(t) = 2 - |t| on the interval $-1 \le t \le 3$.

Autumn 2007

Calculus & Analytic Geometry I

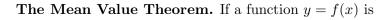
The Theorems—Most Especially the MVT

The Intermediate Value Theorem. A function y = f(x) that is continuous on [a, b] takes on every value between f(a) and f(b).

Rolle's Theorem. If a function y = f(x) is

- continuous on [a, b]
- differentiable on (a, b)
- f(a) = f(b)

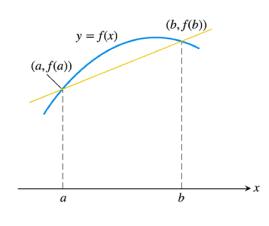
then there exists a c in (a, b) such that f'(c) = 0.



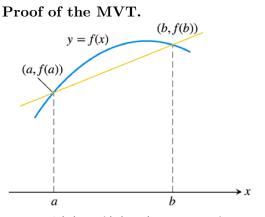
- continuous on [a, b]
- differentiable on (a, b)

then there exists a c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof of Rolle's Theorem.



Application of Rolle's Theorem. Show that the function $f(x) = \frac{1}{1-t} + \sqrt{1+t} - 3.1$ has exactly one real zero in the interval (-1, 1).



Let h(x) = f(x) - (equation of secant line).

Corollary 1. If f'(x) = 0 at each point of (a, b), then f(x) is a constant function on the interval (a, b). (i.e. f(x) = C for some real number C.)

Corollary 2. If f'(x) = g'(x) at each point of (a, b), then f(x) and g(x) differ by a constant function on the interval (a, b). (i.e. f(x) = g(x) + C for some real number C.)

Problems.

- 1. Find all possible function f(x) such that $f'(x) = x^3$.
- 2. Find the function g(t) such that $g'(t) = e^{2t}$ and $g(0) = \frac{3}{2}$.
- 3. Suppose the acceleration of a body is measure as 9.8 m/s² and we know that v(0) = -3 m/s, s(0) = 5 m. Find an equation to describe the body's position at time t.