## CALCULUS & ANALYTIC GEOMETRY I

## Sigma notation and Definite Integrals

$$\sum_{k=1}^{n} a_k$$

Illustrations.

$$\bullet \sum_{k=1}^{3} \frac{k-1}{k}$$

• 
$$\sum_{i=1}^{4} 3 \cdot 2^{k+1}$$

• 
$$\sum_{j=0}^{2} \frac{(-1)^j}{j+1}$$

• 
$$\sum_{j=-1}^{1} \frac{(-1)^j}{j+2}$$

• 
$$\sum_{k=3}^{10} 1$$

$$\bullet \sum_{i=1}^{10} n + i$$

#### **Rules for Finite Sums**

1. Sum Rule:  $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$ .

2. Difference Rule:  $\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$ .

3. Constant Multiple Rule:  $\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$ .

4. Constant Value Rule:  $\sum_{k=1}^{n} c = n \cdot c$ .

### Some Important Sums

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \qquad \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \qquad \qquad \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Let  $f(x) = 1 - x + 2x^2$ . Find a formula for the upper sum obtained by dividing the interval [1, 3] into n equal subintervals. Then take the limit of these sums as  $n \to \infty$  to calculate the area under curve on [0, 3].

**Riemann Sum.** For a function f(x) on an interval [a, b] the Riemann Sum

$$\sum_{k=0}^{n} f(x_i^*) \Delta x$$

approximates the (signed) area under the curve from [a, b] using n intervals.

 $\Delta x =$ 

Endpoints  $a = x_0, x_1, x_2, \dots, x_{n-1}, x_n = b$ :

Sample points  $x_i^*$  lies in *i*th subinterval  $[x_{i-1}, x_i]$ 

The definite integral of f over [a, b] is the limit of the Riemann sum  $\sum_{k=0}^{n} f(x_i^*) \Delta x$  as  $n \to \infty$  using any choice of  $x_i^*$  in  $[x_{i-1}, x_i]$ , provided the limit exists. If the limit exists, we say the function is integrable on [a, b].

$$\int_{a}^{b} f(x)dx$$

A continuous function is always integrable, that is to say

Compute  $\int_0^b c dx$  where c is a fixed real number.

Compute  $\int_0^b x^2 dx$  where c is a fixed real number.

# Properties of Definite Integrals

1. Order of Integration: 
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

2. Zero Width Interal: 
$$\int_a^a f(x)dx =$$

3. Constant Multiple: 
$$\int_a^b kf(x)dx=k\int_a^b f(x)dx \text{ for any number } k$$
 
$$\int_a^b -f(x)dx=-\int_a^b f(x)dx$$

4. Sum and Difference: 
$$\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

5. Additivity: 
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int$$

6. Max-Min Inequality: If f attains a maximum and minimum value on the interval [a, b] then

$$\min f \cdot (b-a) \le \int_a^b f(x) dx \le \max f \cdot (b-a)$$

7. Domination: If 
$$f(x) \ge g(x)$$
 on  $[a, b]$  then  $\int_a^b f(x)dx \ge \int_a^b g(x)dx$ .

Suppose that 
$$\int_{1}^{2} f(x)dx = -4$$
,  $\int_{1}^{5} f(x)dx = 6$ , and  $\int_{1}^{5} g(x)dx = 8$ . Find  $\int_{2}^{5} f(x)dx$   $\int_{1}^{5} [4f(x) - g(x)]dx$   $\int_{2}^{2} f(x)dx$   $\int_{5}^{1} [g(x) - f(x)]dx$