В

DIAGNOSTIC TEST: ANALYTIC GEOMETRY

- Find an equation for the line that passes through the point (2, −5) and
 - (a) has slope −3
 - (b) is parallel to the x-axis
 - (c) is parallel to the y-axis
 - (d) is parallel to the line 2x 4y = 3
- Find an equation for the circle that has center (-1, 4) and passes through the point (3, -2).
- 3. Find the center and radius of the circle with equation $x^2 + y^2 6x + 10y + 9 = 0$.
- Let A(−7, 4) and B(5, −12) be points in the plane.
 - (a) Find the slope of the line that contains A and B.
 - (b) Find an equation of the line that passes through A and B. What are the intercepts?
 - (c) Find the midpoint of the segment AB.
 - (d) Find the length of the segment AB.
 - (e) Find an equation of the perpendicular bisector of AB.
 - (f) Find an equation of the circle for which AB is a diameter.
- Sketch the region in the xy-plane defined by the equation or inequalities.

(a)
$$-1 \le y \le 3$$

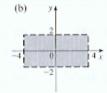
(b)
$$|x| < 4$$
 and $|y| < 2$

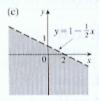
(c)
$$y < 1 - \frac{1}{2}x$$

(d)
$$v \ge x^2 - 1$$

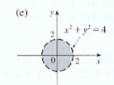
(e)
$$x^2 + y^2 < 4$$

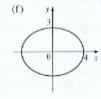
(f)
$$9x^2 + 16y^2 = 144$$


ANSWERS TO DIAGNOSTIC TEST B: ANALYTIC GEOMETRY


1. (a) y = -3x + 1

(c) x = 2


- (b) y = -5(d) $y = \frac{1}{2}x 6$
- 2. $(x + 1)^2 + (y 4)^2 = 52$
- 3. Center (3, −5), radius 5
- **4.** (a) $-\frac{4}{3}$
 - (b) 4x + 3y + 16 = 0; x-intercept -4, y-intercept $-\frac{16}{3}$
 - (c) (-1, -4)
 - (d) 20
 - (e) 3x 4y = 13
 - (f) $(x + 1)^2 + (y + 4)^2 = 100$


5. (a)

If you have had difficulty with these problems, you may wish to consult the Review of Analytic Geometry on the website www.stewartcalculus.com.