Solutions 4.2

- 3. $f(x) = \sqrt{x} \frac{1}{3}x$, [0, 9]. f, being the difference of a root function and a polynomial, is continuous and differentiable on $[0, \infty)$, so it is continuous on [0, 9] and differentiable on (0, 9). Also, f(0) = 0 = f(9). $f'(c) = 0 \Leftrightarrow \frac{1}{2\sqrt{c}} \frac{1}{3} = 0 \Leftrightarrow 2\sqrt{c} = 3 \Leftrightarrow \sqrt{c} = \frac{3}{2} \Rightarrow c = \frac{9}{4}$, which is in the open interval (0, 9), so $c = \frac{9}{4}$ satisfies the conclusion of Rolle's Theorem.
- 4. $f(x) = \cos 2x$, $[\pi/8, 7\pi/8]$. f, being the composite of the cosine function and the polynomial 2x, is continuous and differentiable on \mathbb{R} , so it is continuous on $[\pi/8, 7\pi/8]$ and differentiable on $(\pi/8, 7\pi/8)$. Also, $f(\frac{\pi}{8}) = \frac{1}{2}\sqrt{2} = f(\frac{7\pi}{8})$. $f'(c) = 0 \Leftrightarrow -2\sin 2c = 0 \Leftrightarrow \sin 2c = 0 \Leftrightarrow 2c = \pi n \Leftrightarrow c = \frac{\pi}{2}n$. If n = 1, then $c = \frac{\pi}{2}$, which is in the open interval $(\pi/8, 7\pi/8)$, so $c = \frac{\pi}{2}$ satisfies the conclusion of Rolle's Theorem.
- 5. $f(x) = 1 x^{2/3}$. $f(-1) = 1 (-1)^{2/3} = 1 1 = 0 = f(1)$. $f'(x) = -\frac{2}{3}x^{-1/3}$, so f'(c) = 0 has no solution. This does not contradict Rolle's Theorem, since f'(0) does not exist, and so f is not differentiable on (-1, 1).
- 7. $\frac{f(8) f(0)}{8 0} = \frac{6 4}{8} = \frac{1}{4}$. The values of c which satisfy $f'(c) = \frac{1}{4}$ seem to be about c = 0.8, 3.2, 4.4, and 6.1.



- 13. $f(x) = e^{-2x}$, [0,3]. f is continuous and differentiable on \mathbb{R} , so it is continuous on [0,3] and differentiable on (0,3). $f'(c) = \frac{f(b) f(a)}{b a} \quad \Leftrightarrow \quad -2e^{-2c} = \frac{e^{-6} e^0}{3 0} \quad \Leftrightarrow \quad e^{-2c} = \frac{1 e^{-6}}{6} \quad \Leftrightarrow \quad -2c = \ln\left(\frac{1 e^{-6}}{6}\right) \quad \Leftrightarrow \quad c = -\frac{1}{2}\ln\left(\frac{1 e^{-6}}{6}\right) \approx 0.897$, which is in (0,3).
- **14.** $f(x) = \frac{x}{x+2}$, [1,4]. f is continuous on [1,4] and differentiable on (1,4). $f'(c) = \frac{f(b) f(a)}{b-a} \Leftrightarrow \frac{2}{(c+2)^2} = \frac{\frac{2}{3} \frac{1}{3}}{4-1} \Leftrightarrow (c+2)^2 = 18 \Leftrightarrow c = -2 \pm 3\sqrt{2}$. $-2 + 3\sqrt{2} \approx 2.24$ is in (1,4).
- 15. $f(x) = (x-3)^{-2} \implies f'(x) = -2(x-3)^{-3}$. $f(4) f(1) = f'(c)(4-1) \implies \frac{1}{1^2} \frac{1}{(-2)^2} = \frac{-2}{(c-3)^3} \cdot 3 \implies \frac{3}{4} = \frac{-6}{(c-3)^3} \implies (c-3)^3 = -8 \implies c-3 = -2 \implies c = 1$, which is not in the open interval (1,4). This does not contradict the Mean Value Theorem since f is not continuous at x = 3.

Solutions 4.2

- 18. Let $f(x) = 2x 1 \sin x$. Then f(0) = -1 < 0 and $f(\pi/2) = \pi 2 > 0$. f is the sum of the polynomial 2x 1 and the scalar multiple $(-1) \cdot \sin x$ of the trigonometric function $\sin x$, so f is continuous (and differentiable) for all x. By the Intermediate Value Theorem, there is a number c in $(0, \pi/2)$ such that f(c) = 0. Thus, the given equation has at least one real root. If the equation has distinct real roots a and b with a < b, then f(a) = f(b) = 0. Since f is continuous on [a, b] and differentiable on (a, b), Rolle's Theorem implies that there is a number r in (a, b) such that f'(r) = 0. But $f'(r) = 2 \cos r > 0$ since $\cos r \le 1$. This contradiction shows that the given equation can't have two distinct real roots, so it has exactly one real root.
- 31. For x > 0, f(x) = g(x), so f'(x) = g'(x). For x < 0, $f'(x) = (1/x)' = -1/x^2$ and $g'(x) = (1 + 1/x)' = -1/x^2$, so again f'(x) = g'(x). However, the domain of g(x) is not an interval [it is $(-\infty, 0) \cup (0, \infty)$] so we cannot conclude that f g is constant (in fact it is not).