Solutions 4.4

- 3. (a) When x is near a, f(x) is near 0 and p(x) is large, so f(x) p(x) is large negative. Thus, $\lim_{x \to a} [f(x) p(x)] = -\infty$.
 - (b) $\lim_{x\to a} [p(x)-q(x)]$ is an indeterminate form of type $\infty-\infty$.
 - (c) When x is near a, p(x) and q(x) are both large, so p(x) + q(x) is large. Thus, $\lim_{x \to a} [p(x) + q(x)] = \infty$.
- 4. (a) $\lim_{x\to a} [f(x)]^{g(x)}$ is an indeterminate form of type 0^0 .
 - (b) If $y = [f(x)]^{p(x)}$, then $\ln y = p(x) \ln f(x)$. When x is near $a, p(x) \to \infty$ and $\ln f(x) \to -\infty$, so $\ln y \to -\infty$. Therefore, $\lim_{x \to a} [f(x)]^{p(x)} = \lim_{x \to a} y = \lim_{x \to a} e^{\ln y} = 0$, provided f^p is defined.
 - (c) $\lim_{x\to a} [h(x)]^{p(x)}$ is an indeterminate form of type 1^{∞} .
 - (d) $\lim_{x \to a} [p(x)]^{f(x)}$ is an indeterminate form of type ∞^0 .
 - (e) If $y = [p(x)]^{q(x)}$, then $\ln y = q(x) \ln p(x)$. When x is near $a, q(x) \to \infty$ and $\ln p(x) \to \infty$, so $\ln y \to \infty$. Therefore, $\lim_{x \to a} [p(x)]^{q(x)} = \lim_{x \to a} y = \lim_{x \to a} e^{\ln y} = \infty.$
 - (f) $\lim_{x\to a} q^{(x)} \sqrt{p(x)} = \lim_{x\to a} [p(x)]^{1/q(x)}$ is an indeterminate form of type ∞^0 .
- 5. This limit has the form $\frac{0}{0}$. We can simply factor and simplify to evaluate the limit.

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x} = \lim_{x \to 1} \frac{(x+1)(x-1)}{x(x-1)} = \lim_{x \to 1} \frac{x+1}{x} = \frac{1+1}{1} = 2$$

- 6. This limit has the form $\frac{0}{0}$. $\lim_{x\to 2} \frac{x^2+x-6}{x-2} = \lim_{x\to 2} \frac{(x+3)(x-2)}{x-2} = \lim_{x\to 2} (x+3) = 2+3=5$
- 17. $\lim_{x\to 0^+} [(\ln x)/x] = -\infty$ since $\ln x \to -\infty$ as $x\to 0^+$ and dividing by small values of x just increases the magnitude of the quotient $(\ln x)/x$. L'Hospital's Rule does not apply.
- 18. This limit has the form $\frac{\infty}{\infty}$. $\lim_{x \to \infty} \frac{\ln \ln x}{x} = \lim_{x \to \infty} \frac{\frac{1}{\ln x} \cdot \frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x \ln x} = 0$
- 27. This limit has the form $\frac{0}{0}$. $\lim_{x\to 0} \frac{\sin^{-1} x}{x} = \lim_{x\to 0} \frac{1/\sqrt{1-x^2}}{1} = \lim_{x\to 0} \frac{1}{\sqrt{1-x^2}} = \frac{1}{1} = 1$
- 36. This limit has the form $\frac{0}{0}$. $\lim_{x\to 0} \frac{e^x e^{-x} 2x}{x \sin x} \stackrel{\mathrm{H}}{=} \lim_{x\to 0} \frac{e^x + e^{-x} 2}{1 \cos x} \stackrel{\mathrm{H}}{=} \lim_{x\to 0} \frac{e^x e^{-x}}{\sin x} \stackrel{\mathrm{H}}{=} \lim_{x\to 0} \frac{e^x + e^{-x}}{\cos x} = \frac{1+1}{1} = 2$
- 37. This limit has the form $\frac{0}{0}$. $\lim_{x\to 0} \frac{\cos x 1 + \frac{1}{2}x^2}{x^4} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{-\sin x + x}{4x^3} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{-\cos x + 1}{12x^2} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{\sin x}{24x} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{\cos x}{24} = \frac{1}{24}$

Solutions 4.4

43. This limit has the form
$$\infty \cdot 0$$
. $\lim_{x \to \infty} x^3 e^{-x^2} = \lim_{x \to \infty} \frac{x^3}{e^{x^2}} = \lim_{x \to \infty} \frac{3x^2}{2xe^{x^2}} = \lim_{x \to \infty} \frac{3x}{2e^{x^2}} = \lim_{x \to \infty} \frac{3}{4xe^{x^2}} = 0$

46. This limit has the form $\infty \cdot 0$.

$$\lim_{x \to \infty} x \tan(1/x) = \lim_{x \to \infty} \frac{\tan(1/x)}{1/x} \stackrel{\mathrm{H}}{=} \lim_{x \to \infty} \frac{\sec^2(1/x)(-1/x^2)}{-1/x^2} = \lim_{x \to \infty} \sec^2(1/x) = 1^2 = 1$$

$$53. \ \ y = x^{x^2} \quad \Rightarrow \quad \ln y = x^2 \ln x, \\ \ \text{so} \ \lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x^2 \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x^2} \stackrel{\text{H}}{=} \lim_{x \to 0^+} \frac{1/x}{-2/x^3} = \lim_{x \to 0^+} \left(-\frac{1}{2} x^2 \right) = 0 \quad \Rightarrow \\ \lim_{x \to 0^+} x^{x^2} = \lim_{x \to 0^+} e^{\ln y} = e^0 = 1.$$

71.
$$\lim_{x\to\infty} \frac{x}{\sqrt{x^2+1}} \stackrel{\text{H}}{=} \lim_{x\to\infty} \frac{1}{\frac{1}{2}(x^2+1)^{-1/2}(2x)} = \lim_{x\to\infty} \frac{\sqrt{x^2+1}}{x}$$
. Repeated applications of l'Hospital's Rule result in the original limit or the limit of the reciprocal of the function. Another method is to try dividing the numerator and denominator

by
$$x$$
: $\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{x/x}{\sqrt{x^2/x^2 + 1/x^2}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + 1/x^2}} = \frac{1}{1} = 1$