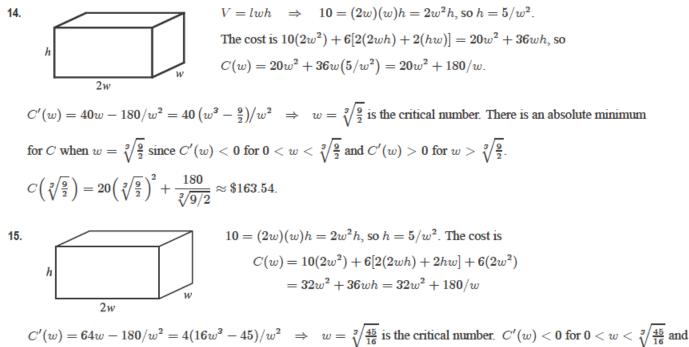
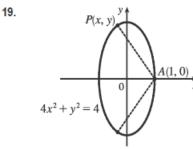
Solutions 4.7



- C'(w) > 0 for $w > \sqrt[g]{\frac{45}{16}}$. The minimum cost is $C\left(\sqrt[g]{\frac{45}{16}}\right) = 32(2.8125)^{2/3} + 180/\sqrt{2.8125} \approx \191.28 .
- 17. The distance from a point (x, y) on the line y = 4x + 7 to the origin is √(x 0)² + (y 0)² = √x² + y². However, it is easier to work with the *square* of the distance; that is, D(x) = (√x² + y²)² = x² + y² = x² + (4x + 7)². Because the distance is positive, its minimum value will occur at the same point as the minimum value of D. D'(x) = 2x + 2(4x + 7)(4) = 34x + 56, so D'(x) = 0 ⇔ x = -\frac{28}{17}.

D''(x) = 34 > 0, so D is concave upward for all x. Thus, D has an absolute minimum at $x = -\frac{28}{17}$. The point closest to the origin is $(x, y) = \left(-\frac{28}{17}, 4\left(-\frac{28}{17}\right) + 7\right) = \left(-\frac{28}{17}, \frac{7}{17}\right)$.



From the figure, we see that there are two points that are farthest away from A(1, 0). The distance d from A to an arbitrary point P(x, y) on the ellipse is $d = \sqrt{(x-1)^2 + (y-0)^2}$ and the square of the distance is $S = d^2 = x^2 - 2x + 1 + y^2 = x^2 - 2x + 1 + (4 - 4x^2) = -3x^2 - 2x + 5$. S' = -6x - 2 and $S' = 0 \implies x = -\frac{1}{3}$. Now S'' = -6 < 0, so we know that S has a maximum at $x = -\frac{1}{3}$. Since $-1 \le x \le 1$, S(-1) = 4,

 $S\left(-\frac{1}{3}\right) = \frac{16}{3}$, and S(1) = 0, we see that the maximum distance is $\sqrt{\frac{16}{3}}$. The corresponding *y*-values are $y = \pm\sqrt{4-4\left(-\frac{1}{3}\right)^2} = \pm\sqrt{\frac{32}{9}} = \pm\frac{4}{3}\sqrt{2} \approx \pm 1.89$. The points are $\left(-\frac{1}{3}, \pm\frac{4}{3}\sqrt{2}\right)$.

Solutions 4.7



52. $y = 1 + 40x^3 - 3x^5 \Rightarrow y' = 120x^2 - 15x^4$, so the tangent line to the curve at x = a has slope $m(a) = 120a^2 - 15a^4$. Now $m'(a) = 240a - 60a^3 = -60a(a^2 - 4) = -60a(a + 2)(a - 2)$, so m'(a) > 0 for a < -2, and 0 < a < 2, and m'(a) < 0 for -2 < a < 0 and a > 2. Thus, m is increasing on $(-\infty, -2)$, decreasing on (-2, 0), increasing on (0, 2), and decreasing on $(2, \infty)$. Clearly, $m(a) \to -\infty$ as $a \to \pm \infty$, so the maximum value of m(a) must be one of the two local maxima, m(-2) or m(2). But both m(-2) and m(2) equal $120 \cdot 2^2 - 15 \cdot 2^4 = 480 - 240 = 240$. So 240 is the largest slope, and it occurs at the points (-2, -223) and (2, 225). *Note:* a = 0 corresponds to a local *minimum* of m.