Limits Algebraically

Big Idea On nice functions, limits behave properly. (By that, I mean you can manipulate the symbol "lim" they way you would expect algebraically.)

The Laws. Suppose that c is a constant, n an integer, and the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then

SUM $\quad \lim _{x \rightarrow a}[f(x)+g(x)]=$

DIFFERENCE
 $$
\lim _{x \rightarrow a}[f(x)-g(x)]=
$$

CONSTANT MULTIPLE $\quad \lim _{x \rightarrow a}[c f(x)]=$

PRODUCT

$\lim _{x \rightarrow a}[f(x) g(x)]=$

QUOTIENT

$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$
POWER

$$
\lim _{x \rightarrow a}[f(x)]^{n}=
$$

ROOT

$$
\begin{aligned}
& \lim _{x \rightarrow a}[f(x)]^{1 / n}= \\
& \lim _{x \rightarrow a} c= \\
& \lim _{x \rightarrow a} x=
\end{aligned}
$$

Problem. Use the limit laws to evaluate:
$\lim _{x \rightarrow-1} 3\left(x^{2}+1\right)^{4}$

$$
\lim _{x \rightarrow 4^{-}} \sqrt{16-x^{2}}
$$

Other extremely useful properties.

- Direct Substitution Property. If f is a polynomial or rational function and a is in the domain of f, then

$$
\lim _{x \rightarrow a}=
$$

- If two functions are equal except at a fixed point a, their limits (if they exist) as they approach a must be equal.

$$
\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x^{4}-1} \quad \lim _{x \rightarrow 0} \frac{x}{\sqrt{1+3 x}-1}
$$

- The Sandwich Theorem. Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L .
$$

Then $\lim _{x \rightarrow c} f(x)=L$.

Example. Evaluate $\lim _{x \rightarrow 0} x^{4} \cos \frac{2}{x}$

To think about. It can be shown that the inequalities $1-\frac{x^{2}}{6}<\frac{x \sin x}{2-2 \cos x}<1$ hold for all values of x close to 0 . What does this tell you about $\lim _{x \rightarrow 0} \frac{x \sin x}{2-2 \cos x}$?

Continuity

Nice functions are continuous....
Definition. A function $f(x)$ is continuous at a(n interior) point c, if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

A function is continuous at a left endpoint a or is continuous at a right endpoint b if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

How can a function fail to be continuous at a point?

Definition. A function is called continuous if it is continuous at every point of its domain.
Is $f(x)=1 / x^{2}$ continuous?

Continuous functions include ...

Where does the following function fail to be continuous on the interval $[-5,6]$?

Good News-Algebraic combinations of continuous functions are continuous (whenever they are defined). So if f and g are continuous at $x=c$, then so are $f+g, f-g, f \cdot g, k \cdot f$ for a constant $k, f / g$ provided $g(c) \neq 0$, and $f^{r / s}$ provided it is defined and r and s are integers. Inverses of continuous functions are continuous. Compositions of continuous functions are continuous.

Problems. For what real numbers do these functions fail to be continuous?
$y=\frac{1}{x-2}-3 x$

$$
y=\frac{1}{|x|+1}-\frac{x^{2}}{2}
$$

$$
y=\frac{\sin x}{x}
$$

$$
y=\sqrt{2 x+3}
$$

Intermediate Value Theorem for Continuous Functions A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. Said another way, given y_{0} between $f(a)$ and $f(b) \ldots$

Problem. Prove that there is a root of the equation $x^{4}+x=3$ in the interval $(1,2)$.

Calculus \& Analytic Geometry I

Horizontal Asymptotes

Limits at positive or negative infinity tell us how the function "eventually" behaves (if ever)...

$$
f(x)=e^{-x} \quad g(t)=\frac{7 t^{3}}{t^{3}-3 t^{2}+6 t} \quad h(z)=\frac{2+\sqrt{z}}{2-\sqrt{z}}
$$

$$
f(x)=\frac{2 x^{3}-2 x+3}{3 x^{3}+2 x^{2}-5 x}
$$

$$
h(x)=\frac{2 x^{2}-2 x+3}{3 x^{3}+2 x^{2}-5 x}
$$

$$
g(x)=\frac{2 x^{4}-2 x+3}{3 x^{3}+2 x^{2}-5 x}
$$

A line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=b
$$

Problem. Find the asymptotes (horizontal and vertical) for $f(x)=\frac{x^{3}+7 x^{2}-x-7}{x^{2}+x-2}$.

Calculus \& Analytic Geometry I

Tangents and Derivatives at a Point

Informally, the derivative of a function $y=f(x)$ at a point $x=a$ is defined to be the slope (or the rate of change) of the function at the point $(a, f(a))$. In $\S 2.1$, we estimated the rate of change (a.k.a. the derivative) by calculating the average rates of change of the function on smaller and smaller intervals containing a and watched the rates stabilize.
For each of the intervals given below, write an equation representing the average rate of change for the general function $y=f(x)$ on the specified interval. Then, on the graph provided sketch the line used to calculate the average rate of change on that interval.

Interval: $(a-h, a)$

$$
(a, a+h)
$$

$$
(a-h, a+h)
$$

Avg. rate
of change:

The expressions you have just discovered are referred to as difference quotients. Each expression acts as an estimate for the derivative $f^{\prime}(a)$. To improve these estimates, let $h \rightarrow 0$. This leads us to the formal definition of the derivative.

Definition. The derivative (slope, rate of change) of a function f at $x=a$ is defined as:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}
\end{aligned}
$$

provided these limits exist and are equal. In this case, f is said to be differentiable at $x=a$.
Are all three difference quotients really needed? Consider $f(x)=|x|$ at $x=0$.

Problems. Find the slope of the function's graph at the given point. Then find the equation for the line tangent to the graph there.

1. $y=2 \sqrt{x}$,
2. $y=\frac{x-1}{x+1}, \quad x=0$

Summary. The following ideas are equivalent:

- the slope of $y=f(x)$ at $x=x_{0}$
- the slope of the tangent to the curve $y=f(x)$ at $x=x_{0}$
- the rate of change of $f(x)$ with respect to x at $x=x_{0}$
- the derivative $f^{\prime}\left(x_{0}\right)$
- the limit of (any) difference quotient, $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$

The Derivative as a Function

Problem. Find the slope of the function's graph at the given point. Then find the equation for the line tangent to the graph there.

1. $y=\frac{x-1}{x+1}, \quad x=0$

Working Backwards. What derivative is represented by each of the following expressions?

$$
\lim _{x \rightarrow 5} \frac{2^{x}-32}{x-5} \quad \lim _{h \rightarrow 0} \frac{\cos (\pi+h)+1}{h}
$$

Derivative as a function. Up to now, we have looked at the derivative as a number. It gives us information about a function at a point. But the numerical value of derivative varies from point to point, and these new values can also be considered as the values of a new function- the derivative function-with its own graph. Viewed in this way the derivative is a global object.

All functions and their derivatives are related in the same way.

Function	\leftrightarrow	Derivative
increasing	\leftrightarrow	
decreasing	\leftrightarrow	
horizontal	\leftrightarrow	
steep (rising or falling)	\leftrightarrow	
gradual (rising or falling)	\leftrightarrow	
straight	\leftrightarrow	

Notation. Many ways to denote the derivative of the function $y=f(x)$:

$$
f^{\prime}(y)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D(f)(x)=D_{x} f(x) .
$$

To indicate the value of the derivative at a specified point $x=a$:

$$
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}=\left.\frac{d f}{d x}\right|_{x=a}=\left.\frac{d}{d x} f(x)\right|_{x=a} .
$$

Illustration. For the graph below, sketch its derivative.

Now make a sketch of a graph which would have the original graph as its derivative.

As time permits: For each of the elementary functions below, first make a rough sketch of the function itself, then, based on the correspondences between functions and their derivatives, sketch the derivative of the function (as best you can.)

1. $f(x)=3 x$
2. $g(x)=3 x+1$
3. $h(x)=x^{2}$
4. $i(x)=e^{x}$
5. $j(x)=\sin x$

Definition. A function f is differentiable at a is $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) if it is differentiable at every number in the interval. A function is differentiable if it is differentiable at every point in its domain.

For your consideration

[T/F] If f is differentiable at a, then f is continuous at a.
[T/F] If f is continuous at a, the f is differentiable at a.

Higher Derivatives Since the derivative of a function f gives a new function f^{\prime}, there is nothing stopping us from analyzing the rate of change of f^{\prime}, denoted $f^{\prime \prime}$ or $d^{2} f / d y^{2}$. What about the rate of change of $f^{\prime \prime}$?

