Autumn 2008

Calculus & Analytic Geometry I

The Derivative: Analytic Viewpoint

Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f'(x) =

Derivative of a Linear Function. If f(x) = mx + b, then f'(x) =______.

Derivative of a Constant Times a Function. If $f(x) = c \cdot g(x)$, then f'(x) =

Proof. $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Derivatives of Sums and Differences. If f(x) = g(x) + h(x), then f'(x) =

Proof.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

So if f(x) = g(x) - h(x), then f'(x) =______ because

Derivative of a Power Function. To calculate the derivative of x^2 (using the righthanded difference quotient) we had to multiply out $(x + h)^2$. In general, to find the derivative of x^n (for n and integer) we will have to multiply out $(x + h)^n$. Let's look at some examples:

$$(x+h)^{2} = x^{2} + 2xh + (h)^{2}$$

$$(x+h)^{3} = x^{3} + 3x^{2}h + 3x(h)^{2} + (h)^{3}$$

$$(x+h)^{4} = x^{4} + 4x^{3}h + 6x^{2}(h)^{2} + 4x(h)^{3} + (h)^{4}$$

$$\vdots \qquad \vdots$$

$$(x+h)^{n} = x^{n} + nx^{n-1}h + \underbrace{\cdots}_{\text{Terms involving } (h)^{2} \text{ and higher powers of } h$$

Now to find the derivative of $f(x) = x^n$: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$

Derivative of an Exponential. If $f(x) = e^x$, then f'(x) =

Proof.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivation of Product Rule. Suppose we know the derivatives of f(x) and g(x) and we want to calculate the derivative of the product f(x)g(x).

$$(f(x)g(x))' = \lim_{h \to 0}$$

The Product Rule.

$$(fg)' = f'g + fg'$$

In words:

The derivative of a product is the derivative of the first factor multiplied by the second, plus the first factor multiplied by the derivative of the second.

Quotient Rule. For completeness...Suppose we know the derivatives of f(x) and g(x) and we want to calculate the derivative of the quotient f(x)/g(x).

$$(f/g)' = \frac{f'g - fg'}{g^2}.$$

We could derive it with difference quotients, but it will be much easier when we have the chain rule....

Apply your knowledge and find the following derivatives:

1.
$$y = (3 - x^2)(x^3 - x + 1)$$

2. $v = \frac{1 + w - 4\sqrt{w}}{w}$
3. $z = \frac{12}{x^2}$

Recall the graphs of your favorite trig functions...

Now sketch their derivative functions based one where they are increasing, decreasing, or have a slope of zero.

So we conjecture that

$$\frac{d}{dx}\sin x = \frac{d}{dx}\cos x =$$

Apply this knowledge.

1. Find
$$\frac{d}{d\theta} \left(\theta \sin \theta + \cos \theta\right)$$
.

2. Find $[(\sin t + \cos t)(\sin t - \cos t)]'$.

3. Find the derivatives for the remaining trigonometric functions.

 $(\sec x)' =$ $(\tan x)' =$

$$(\cot x)' = (\csc x)' =$$

Last but not least, it is time to analytically verify that $\frac{d}{dx}\sin x = \cos x$ and $\frac{d}{dx}\cos x = -\sin x$. Recall the sum formulas: $(h) \sin(x)\sin(h)$ $(\pm h)$ $\cos(a$ (m)

 $\sin(x+h) = \sin(x)\cos(h) + \sin(h)\cos(x)$

$$\operatorname{os}(x+h) = \cos(x)\cos(h) - \sin(x)\sin(h)$$

$$\sin'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x-h)}{2h} \qquad \qquad \cos'(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x-h)}{2h}$$

Calculus & Analytic Geometry I

The Chain Rule—Derivative of function compositions

The Chain Rule — Motivation.

Suppose we are blowing up a spherical balloon. We know that the volume of a balloon depends its radius. $(V = \frac{4}{3}\pi r^3)$ When the radius is 15 cm, at what rate is the volume changing with respect to a change in the radius?

As we blow up the balloon, the radius (and hence the volume) are changing over time. Suppose the radius is changing at a rate of 3 cm every second when r = 15 cm. When the radius is 15 cm, at what rate is the volume changing with respect to a change in time?

The Chain Rule — Derivation.

The chain rule applies to a composition of functions. Suppose f(g(x)) is a composite function. Let us write

z = g(x) and y = f(z), so y = f(g(x)).

How does a change in x approximately effect a change in z?

How does a change in z approximately effect a change in y?

Combine these two approximations to relate a change in y to a change in x.

In words: The derivative of a composite function is the product of the derivatives of the outside and inside functions. The derivative of the outside function must be evaluated at the inside function.

Problems. Find the derivatives of the given functions:

1.
$$f(x) = \sqrt{1 - x^2}$$

2. $z = 3^{-6t}$

3.
$$h(r) = \sin(10r+3)$$

4. $p(x) = \sec x$

5. $\ell(\theta) = \sin 5\theta + \cos^2 \theta$

6. $g(s) = \sec^3(4s)e^{\sin s}$

7. The quotient rule as an application of the product rule and the chain rule. $P(x) = f(x) \cdot g^{-1}(x)$

TQS 124

Autumn 2008

Calculus & Analytic Geometry I

Implicit Differentiation

Sometimes we are faced with equations that *imply* a relation between two variables.

$$x^{2} + y^{2} = 25 \qquad (x^{2} + y^{2})^{2} = x^{2} - y^{2} \qquad x = \tan(y)$$

Sometimes we can solve for y in terms of x and sometimes we can't. But we can still ask about the rate of change of y with respect to x. We treat y as a function of x and use the chain rule.

TQS 124

Autumn 2008

Calculus & Analytic Geometry I

Derivatives of Inverse Functions

The chain rule is a powerful differentiation tool. It helps us determine slopes of

• composition of functions Find $\frac{d}{dx} \sec^2(x)$.

• parametric functions Suppose $x(t) = 2t^2 + 3$ and $y(t) = t^4$. Find $\frac{dy}{dx}$ at t = -1.

• implicitly defined functions Find $\frac{dr}{d\theta}$ if $e^{r^2\theta} = 2r + 2\theta$.

- inverse functions—as we shall see today.
- Find the derivative of $\ln(x)$ by differentiating the identity $e^{\ln(x)} = x$.

Problem. Find derivatives for the following functions: $y = \ln(\sec x)$ $y = \ln[t(t+1)(t+2)(t+3)]$ **Logarithmic differentiation.** When you need to find a derivative involving lots of products or quotients, sometimes taking a logarithm first can help.

Find derivative of $y = \frac{\theta \sin \theta}{\sqrt{\sec \theta}}$.

Find the derivative of $f^{-1}(x)$ in terms of f'(x) by differentiating the identity $f(f^{-1}(x)) = x$.

Check yourself. Assume that f(x) and g(x) are inverse functions and

What is g(7)? Find g'(-2).

Final Note. For a > 0 and u a differentiable function of x, $\frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$ and $\frac{d}{dx} \log_a u = \frac{1}{u \ln a} \frac{du}{dx}$.