Limits Algebraically

Big Idea On nice functions, limits behave properly. (By that, I mean you can manipulate the symbol "lim" they way you would expect algebraically.)

The Laws. Suppose that c is a constant, n an integer, and the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then

SUM $\quad \lim _{x \rightarrow a}[f(x)+g(x)]=$

DIFFERENCE
 $$
\lim _{x \rightarrow a}[f(x)-g(x)]=
$$

CONSTANT MULTIPLE $\quad \lim _{x \rightarrow a}[c f(x)]=$

PRODUCT

$\lim _{x \rightarrow a}[f(x) g(x)]=$

QUOTIENT
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$
POWER

$$
\lim _{x \rightarrow a}[f(x)]^{n}=
$$

ROOT

$$
\begin{aligned}
& \lim _{x \rightarrow a}[f(x)]^{1 / n}= \\
& \lim _{x \rightarrow a} c= \\
& \lim _{x \rightarrow a} x=
\end{aligned}
$$

Problem. Use the limit laws to evaluate:
$\lim _{x \rightarrow-1} 3\left(x^{2}+1\right)^{4}$

$$
\lim _{x \rightarrow 4^{-}} \sqrt{16-x^{2}}
$$

Other extremely useful properties.

- Direct Substitution Property. If f is a polynomial or rational function and a is in the domain of f, then

$$
\lim _{x \rightarrow a}=
$$

- If two functions are equal except at a fixed point a, their limits (if they exist) as they approach a must be equal.

$$
\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x^{4}-1} \quad \lim _{x \rightarrow 0} \frac{x}{\sqrt{1+3 x}-1}
$$

- The Sandwich Theorem. Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L .
$$

Then $\lim _{x \rightarrow c} f(x)=L$.

Example. Evaluate $\lim _{x \rightarrow 0} x^{4} \cos \frac{2}{x}$

To think about over the break. It can be shown that the inequalities $1-\frac{x^{2}}{6}<\frac{x \sin x}{2-2 \cos x}<1$ hold for all values of x close to 0 . What does this tell you about $\lim _{x \rightarrow 0} \frac{x \sin x}{2-2 \cos x}$?

Continuity

Nice functions are continuous....
Definition. A function $f(x)$ is continuous at a(n interior) point c, if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

A function is continuous at a left endpoint a or is continuous at a right endpoint b if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

How can a function fail to be continuous at a point?

Definition. A function is called continuous if it is continuous at every point of its domain.
Is $f(x)=1 / x^{2}$ continuous?

Continuous functions include ...

Where does the following function fail to be continuous on the interval $[-5,6]$?

Good News-Algebraic combinations of continuous functions are continuous (whenever they are defined). So if f and g are continuous at $x=c$, then so are $f+g, f-g, f \cdot g, k \cdot f$ for a constant $k, f / g$ provided $g(c) \neq 0$, and $f^{r / s}$ provided it is defined and r and s are integers. Inverses of continuous functions are continuous. Compositions of continuous functions are continuous.

Problems. For what real numbers do these functions fail to be continuous?
$y=\frac{1}{x-2}-3 x$

$$
y=\frac{1}{|x|+1}-\frac{x^{2}}{2}
$$

$$
y=\frac{\sin x}{x}
$$

$$
y=\sqrt{2 x+3}
$$

Intermediate Value Theorem for Continuous Functions A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. Said another way, given y_{0} between $f(a)$ and $f(b) \ldots$

Problem. Prove that there is a root of the equation $x^{4}+x=3$ in the interval $(1,2)$.

