Continuity

Did you consider this question?

It can be shown that the inequalities $1-\frac{x^{2}}{6}<\frac{x \sin x}{2-2 \cos x}<1$ hold for all values of x close to 0 . What does this tell you about $\lim _{x \rightarrow 0} \frac{x \sin x}{2-2 \cos x}$?

Nice functions are continuous....
Definition. A function $f(x)$ is continuous at a(n interior) point c, if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

A function is continuous at a left endpoint a or is continuous at a right endpoint b if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b) .
$$

How can a function fail to be continuous at a point?

Definition. A function is called continuous if it is continuous at every point of its domain.
Is $f(x)=1 / x^{2}$ continuous?

Continuous functions include ...

Where does the following function fail to be continuous on the interval $[-5,6]$?

Good News-Algebraic combinations of continuous functions are continuous (whenever they are defined). So if f and g are continuous at $x=c$, then so are $f+g, f-g, f \cdot g, k \cdot f$ for a constant $k, f / g$ provided $g(c) \neq 0$, and $f^{r / s}$ provided it is defined and r and s are integers. Inverses of continuous functions are continuous. Compositions of continuous functions are continuous.

Problems. For what real numbers do these functions fail to be continuous?
$y=\frac{1}{x-2}-3 x$

$$
y=\frac{1}{|x|+1}-\frac{x^{2}}{2}
$$

$$
y=\frac{\sin x}{x}
$$

$$
y=\sqrt{2 x+3}
$$

Intermediate Value Theorem for Continuous Functions A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. Said another way, given y_{0} between $f(a)$ and $f(b) \ldots$

Problem. Prove that there is a root of the equation $x^{4}+x=3$ in the interval $(1,2)$.

Calculus \& Analytic Geometry I

Horizontal Asymptotes

Limits at positive or negative infinity tell us how the function "eventually" behaves (if ever)...

$$
f(x)=e^{-x} \quad g(t)=\frac{7 t^{3}}{t^{3}-3 t^{2}+6 t} \quad h(z)=\frac{2+\sqrt{z}}{2-\sqrt{z}}
$$

$$
f(x)=\frac{2 x^{3}-2 x+3}{3 x^{3}+2 x^{2}-5 x}
$$

$$
h(x)=\frac{2 x^{2}-2 x+3}{3 x^{3}+2 x^{2}-5 x}
$$

$$
g(x)=\frac{2 x^{4}-2 x+3}{3 x^{3}+2 x^{2}-5 x}
$$

A line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=b
$$

Problem. Find the asymptotes (horizontal and vertical) for $f(x)=\frac{x^{3}+7 x^{2}-x-7}{x^{2}+x-2}$.

