
TQS 124 Winter 2008 Quinn

Calculus & Analytic Geometry I

The Chain Rule—Derivative of function compositions

The Chain Rule — Motivation.

Suppose we are blowing up a spherical balloon. We know that the volume of a balloon

depends its radius. (V = 4

3
πr3.) When the radius is 15 cm, at what rate is the volume

changing with respect to a change in the radius?

As we blow up the balloon, the radius (and hence the volume) are changing over time.

Suppose the radius is changing at a rate of 3 cm every second when r = 15 cm. When
the radius is 15 cm, at what rate is the volume changing with respect to a change in
time?

The Chain Rule — Derivation.

The chain rule applies to a composition of functions. Suppose f(g(x)) is a composite

function. Let us write

z = g(x) and y = f(z), so y = f(g(x)).

How does a change in x approximately effect a change in z?

How does a change in z approximately effect a change in y?

Combine these two approximations to relate a change in y to a change in x.

In words: The derivative of a composite function is the product of the derivatives

of the outside and inside functions. The derivative of the outside function must be

evaluated at the inside function.
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Problems. Find the derivatives of the given functions:

1. f(x) =
√

1− x2

2. z = 3−6t

3. h(r) = sin(10r + 3)

4. p(x) = sec x

5. `(θ) = sin 5θ + cos2 θ

6. g(s) = sec3(4s)esin s

7. The quotient rule as an application of the product rule and the chain rule.

P (x) = f(x) · g−1(x)
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Implicit Differentiation

Sometimes we are faced with equations that imply a relation between two variables.

x2 + y2 = 25 (x2 + y2)2 = x2
− y2 x = tan(y)

Sometimes we can solve for y in terms of x and sometimes we can’t. But we can still ask about the

rate of change of y with respect to x. We treat y as a function of x and use the chain rule.
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