CALCULUS & ANALYTIC GEOMETRY I

Derivatives of Inverse Functions

The chain rule is a powerful differentiation tool. It helps us determine slopes of

• composition of functions Find $\frac{d}{dx} \sec^2(x)$.

• parametric functions Suppose $x(t)=2t^2+3$ and $y(t)=t^4$. Find $\frac{dy}{dx}$ at t=-1.

• implicitly defined functions Find $\frac{dr}{d\theta}$ if $e^{r^2\theta} = 2r + 2\theta$.

• inverse functions—as we shall see today.

Find the derivative of ln(x) by differentiating the identity $e^{ln(x)} = x$.

Problem. Find derivatives for the following functions: $y = \ln(\sec x)$ $y = \ln[t(t+1)(t+2)(t+3)]$

Logarithmic differentiation. When you need to find a derivative involving lots of products or quotients, sometimes taking a logarithm first can help.

Find derivative of
$$y = \frac{\theta \sin \theta}{\sqrt{\sec \theta}}$$
.

Find the derivative of $f^{-1}(x)$ in terms of f'(x) by differentiating the identity $f(f^{-1}(x)) = x$.

Check yourself. Assume that f(x) and g(x) are inverse functions and

$$f(-2) = 1$$
 $f'(-2) = 3$
 $f(1) = 7$ $f'(1) = -10$
 $f(7) = -2$ $f'(7) = -2$

What is g(7)? Find g'(-2).

Final Note. For a>0 and u a differentiable function of x, $\frac{d}{dx}a^u=a^u\ln a\frac{du}{dx} \qquad \text{and} \qquad \frac{d}{dx}\log_a u=\frac{1}{u\ln a}\frac{du}{dx}.$