Derivatives of Inverse Functions

The chain rule is a powerful differentiation tool. It helps us determine slopes of

- composition of functions

Find $\frac{d}{d x} \sec ^{2}(x)$.

- parametric functions

Suppose $x(t)=2 t^{2}+3$ and $y(t)=t^{4}$. Find $\frac{d y}{d x}$ at $t=-1$.

- implicitly defined functions

Find $\frac{d r}{d \theta}$ if $e^{r^{2} \theta}=2 r+2 \theta$.

- inverse functions - as we shall see today.

Find the derivative of $\ln (x)$ by differentiating the identity

$$
e^{\ln (x)}=x
$$

Problem. Find derivatives for the following functions:
$y=\ln (\sec x)$

$$
y=\ln [t(t+1)(t+2)(t+3)]
$$

Logarithmic differentiation. When you need to find a derivative involving lots of products or quotients, sometimes taking a logarithm first can help.

Find derivative of $y=\frac{\theta \sin \theta}{\sqrt{\sec \theta}}$.

Find the derivative of $f^{-1}(x)$ in terms of $f^{\prime}(x)$ by differentiating the identity $f\left(f^{-1}(x)\right)=x$.

Check yourself. Assume that $f(x)$ and $g(x)$ are inverse functions and

$$
\begin{array}{llll}
f(-2) & = & 1 & f^{\prime}(-2) \\
& = & 3 \\
f(1) & = & 7 & f^{\prime}(1) \\
f(7) & = & -10 \\
f^{\prime}(7) & = & -2
\end{array}
$$

What is $g(7)$? Find $g^{\prime}(-2)$.

Final Note. For $a>0$ and u a differentiable function of x, $\frac{d}{d x} a^{u}=a^{u} \ln a \frac{d u}{d x} \quad$ and $\quad \frac{d}{d x} \log _{a} u=\frac{1}{u \ln a} \frac{d u}{d x}$.

