Linearization (A.K.A. Linear Approximation)

Linear Approximations. If a function f is "nice" at a point a, we can approximate the function near a by the equation of the line through $(a, f(a))$ with slope $f^{\prime}(a)$. In other words, we use the equation of the tangent line to approximate the function near a.

Problem. Make a rough sketch of the graph $f(x)=\sqrt{x}$. Find the linearization of $f(x)$ at the point $(4,2)$.

Estimate $\sqrt{4.0036}$.

How close to the true value of $\sqrt{4.0036}$ is our estimate using the linear approximation?

Differentials. Let $y=f(x)$ be a differentiable function. The differential $d x$ is an independent variable. The differential $d y$ is defined as

$$
d y=f^{\prime}(x) d x .
$$

Problem

1. Find $d y$ if $f(x)=\sqrt{x}$.
2. Find the value of $d y$ when $x=4$ and $d x=.0036$.

Question. When $d x=\Delta x$, what is the difference between Δy and $d y$?

So the linearization uses $d y$ to approximate the true change Δy. Said another way...

$$
f(a+\Delta x)=f(a)+\Delta y \approx f(a)+d f .
$$

Problems. Find $d y$ for $y=(1+x)^{k}$ where k is a constant. Then estimate $(1.002)^{50}$ and $\sqrt[3]{1.009}$.

We can use differentials to analyze how error propagates through our calculations. Suppose we are calculating the area of a square by measuring the length of one of its sides and then using the formula $A=s^{2}$. Find $d A$ when $s=10 \mathrm{~cm}$.

If our measurement of the side is accurate to within 1 mm , how accurate is our calculation for the area?

The $d A$ calculated above is the absolute error.
The relative error compares the absolute error to the calculated value.
The relative error in the measurement is $\frac{\Delta s}{s}=\frac{d s}{s}=$
The relative error in the area calculation is $\frac{d A}{A}=$

Local Approximation by Polynomials. For a function $f(x)$ the linear approximation of f near $x=a$ is the line

$$
y=f(a)+f^{\prime}(a)(x-a) .
$$

Find $y(a)$ and $y^{\prime}(a)$.

A better approximation of $f(x)$ is a polynomial of higher order which exactly matches the values of the function and some more of its derivatives at the point $x=a$. These are called Taylor polynomials. The $\mathbf{n}^{\text {th }}$-degree Taylor polynomial of f centered at a is given by

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

The Extremes

We are beginning Chapter 4: Applications of Differentiation. Today we examine the maximum and minimum values of functions (a.k.a. the extremes).

Definition. A function f with Domain D has an absolute (global) maximum at c if

$$
f(x) \leq f(c) \text { for all } x \text { in } D
$$

and an absolute (global) minimum at c if

$$
f(x) \geq f(c) \text { for all } x \text { in } D .
$$

The extreme value theorem says that a continuous function on a closed interval always has both an absolute maximum M and an absolute minimum m.

Definition. A function f with Domain D has a local maximum at c if

$$
f(x) \leq f(c) \text { for all } x \text { in some open interval containing } c
$$

and an local minimum at c if

$$
f(x) \geq f(c) \text { for all } x \text { in an open interval containing } c .
$$

What characteristics do extremes have?

Definition. A critical point is a point in the of the domain of a function f where either

- f^{\prime} is zero, or
- f^{\prime} is undefined.

Critical points are candidates for local extremes. Critical points and endpoints are candidates for global extremes.

Problems.

1. Find the absolute maximum and minimum value for $g(x)=x e^{-x}$ on the interval $-1 \leq x \leq 1$.
2. Find the absolute maximum and minimum value for $h(t)=2-|t|$ on the interval $-1 \leq t \leq 3$.
