The Theorems-Most Especially the MVT

The Intermediate Value Theorem. A function $y=f(x)$ that is continuous on $[a, b]$ takes on every value between $f(a)$ and $f(b)$.

Rolle's Theorem. If a function $y=f(x)$ is

- continuous on $[a, b]$
- differentiable on (a, b)
- $f(a)=f(b)$
then there exists a c in (a, b) such that $f^{\prime}(c)=0$.
The Mean Value Theorem. If a function $y=f(x)$ is

- continuous on $[a, b]$
- differentiable on (a, b)
then there exists a c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Proof of Rolle's Theorem.

Application of Rolle's Theorem. Show that the function $f(x)=\frac{1}{1-t}+\sqrt{1+t}-3.1$ has exactly one real zero in the interval $(-1,1)$.

Proof of the MVT.

Let $h(x)=f(x)-($ equation of secant line $)$.

Corollary 1. If $f^{\prime}(x)=0$ at each point of (a, b), then $f(x)$ is a constant function on the interval (a, b). (i.e. $f(x)=C$ for some real number C.)

Corollary 2. If $f^{\prime}(x)=g^{\prime}(x)$ at each point of (a, b), then $f(x)$ and $g(x)$ differ by a constant function on the interval (a, b). (i.e. $f(x)=g(x)+C$ for some real number C.)

Problems.

1. Find all possible functions $f(x)$ such that $f^{\prime}(x)=x^{3}$.
2. Find the function $g(t)$ such that $g^{\prime}(t)=e^{2 t}$ and $g(0)=\frac{3}{2}$.
3. Suppose the acceleration of a body is measure as $9.8 \mathrm{~m} / \mathrm{s}^{2}$ and we know that $v(0)=-3 \mathrm{~m} / \mathrm{s}$, $s(0)=5 \mathrm{~m}$. Find an equation to describe the body's position at time t.

The Derivative Tests

Question. How do you know where a function is increasing or decreasing?

Question. How can a function behave at a transition point as it changes from increasing to decreasing or vice versa?

Question. How does this help us identity local extrema?

Consider a function whose derivative is $f^{\prime}(x)=x^{-1 / 2}(x-3)$. Where is the function increasing? decreasing? Identify inputs that give local extremes.

Knowing how quickly the derivative of a function is changing can also give important information about local extremes.

Definition. The graph of a differentiable function $y=f(x)$ is concave $u p$ on an open interval I if f^{\prime} is increasing on I and concave down if f^{\prime} is decreasing on I.

Definition. A point where the graph of a function has a tangent line and where the concavity changes is called a point of inflection.

First Derivative Test. Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly c itself. Moving across c from left to right

- if f^{\prime} changes from negative to positive at c, the f has a local \qquad at c;
- if f^{\prime} changes from positive to negative at c, the f has a local \qquad at c;
- if f^{\prime} does not change sign at c, then f has no local extremum at c.

Second Derivative Test. Suppose $f^{\prime \prime}$ is continuous on an open interval that contains $x=v$.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}<0$, then f has a local \qquad at $x=c$;
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}>0$, then f has a local \qquad at $x=c$;
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}=0$, then the test fails. The function f may have a local maximum, a local minimum or neither.

The rest of today and tomorrow, we will focus on sketching curves using these two tests.
Problem. Sketch the general shape of a curve satisfying the given information

interval:	$x<0$	$0<x<2$	$2<x<3$	$3<x$
sign of $f^{\prime}:$	-	-	-	+
sign of $f^{\prime \prime}:$	+	-	+	+

Problem. Find all local extrema of $f(x)=-2 \cos x-\cos ^{2} x$ on the interval $-\pi \leq x \leq \pi$.

