Indeterminant Forms and l'Hôpital's Rule

Application of derivatives to assess pesky limits...
Indeterminant Forms. Sometimes we need to evaluate $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ where $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ are either both 0 or both $\infty\left(\frac{0}{0}\right.$ or $\left.\frac{\infty}{\infty}\right)$.

Example. $\lim _{x \rightarrow 2} \frac{x^{7}-128}{x^{3}-8}$
l'Hôpital's Rule. Suppose that $f(c)=g(c)=0$ and that f and g are differentiable on an open interval I containing c, and that $g^{\prime}(x) \neq 0$ on I if $x \neq c$. Then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)},
$$

assuming that the limit on the right side of this equation exists.
Problems. Verify the following limits:

1. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
2. $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\frac{1}{6}$
3. $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sec x}=0$
4. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x+1}{3 x^{2}+5 x-2}=\frac{2}{3}$
5. $\lim _{x \rightarrow \infty} \frac{x+\sin x}{x-\cos x}=1$
6. $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$
7. $\lim _{x \rightarrow 0+} x^{\sin x}=1$

Curve Sketching

Problem. Sketch the general shape of a curve satisfying the given information

interval:	$x<0$	$0<x<2$	$2<x<3$	$3<x$
sign of $f^{\prime}:$	-	-	-	+
sign of $f^{\prime \prime}:$	+	-	+	+

Strategies for Graphing Functions

- Identify domain and any symmetries the curve may have.
- Find first and second derivatives.
- Find critical points and identify behavior at each.
- Determine where function is increasing or decreasing.
- Find points of inflection and concavity.
- Identify asymptotes (l'Hôpital may come in handy).
- Plot key points (intercepts and anything found above).

More Problems. Graph as many of the following functions as time will permit.

1. $y=4 x^{3}-x^{4}$
2. $y=2 x-3 x^{2 / 3}$
3. $y=e^{2 / x}$
4. $y=\frac{(x+1)^{2}}{1+x^{2}}$
