Calculus \& Analytic Geometry I

Antiderivatives and Initial Value Problems

Definition. A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$.
Question. Given a nice function f, how many antiderivatives can it have?

Definition The set of all antiderivatives of f is the indefinite integral of f with respect to x, denoted

$$
\int f(x) d x
$$

The symbol \int is an integral sign. The function f is the integrand and x is the variable of integration. Theme. Every differentiation problem corresponds to an antidifferentiation problem.

Differentiation Problems	Antidifferentiation Problems
$\left(x^{2}\right)^{\prime}=2 x$	$\int 2 x d x=x^{2}+C$
$=$	$\int \cos (x) d x=$
$\left(e^{x}+\ln (x)\right)^{\prime}=$	$=$
$\left(\cos \left(x^{2}\right)\right)^{\prime}=$	$=$
$\left(e^{\tan (x)}\right)^{\prime}=$	$=$
$=$	$\int 4 x \sin \left(x^{2}\right) d x=$
$=$	$\int \cos (x) e^{\sin (x)}=$

A differential equation is an equation that involves a function and its derivatives. An initial value problem (IVP) asks you to solve for a particular antiderivative based on a differential equation and an initial condition.

1. Find $s(t)$ if $\frac{d s}{d t}=\cos t+\sin t, s(\pi)=1$.
2. Find $v(x)$ if $\frac{d v}{d x}=\frac{1}{2} \sec x \tan x, v(0)=1$.
3. Find $y(t)$ if $\frac{d^{2} y}{d t^{2}}=\frac{3 t}{8},\left.\frac{d y}{d t}\right|_{t=1}=3$, and $y(4)=4$.

Calculus \& Analytic Geometry I

Subdivide-Approximate-Accumulate-Refine

How do we find the area of an irregular shape?

The same will be true for finding areas under curves, distance traveled, and average values of functions.

Area under a curve. Let's approximate the area under the curve $f(x)=1-2^{-x^{2}}$ between $0 \leq x \leq 3$.

Number of subdivisions: $n=$ $\Delta x=$
lower sum:
upper sum:
midpoint rule:

To improve our approximation, increase the number of subintervals. (A programmable calculator comes in handy here. If you have a TI-83 or 84, I recommend http://math.ucsd.edu/~ashenk/Calculators/Riemann_TI-83.pdf.)

n	lower sum	upper sum	midpoint rule
10	$1.78632 \ldots$	$2.08573 \ldots$	$1.93594 \ldots$
50	$1.90603 \ldots$	$1.96591 \ldots$	$1.93597 \ldots$
100	$1.92100 \ldots$	$1.95094 \ldots$	$1.93597 \ldots$
250	$1.93000 \ldots$	$1.94196 \ldots$	$1.93597 \ldots$

Distance Traveled. Exact same process-previously we accumulated approximations for area, now we accumulate approximations for distance traveled (based on velocity.)

The following data was collected from a matchbox car traveling down a ramp. Estimate how far the car toy traveled.

What was the average velocity of the toy during the period that is was moving?

In general, the average value of a continuous function $f(x)$ on an interval $[a, b]$ is the area under the curve divided by the length of the interval.

