NAME:		

TQS 124

Calculus & Analytic Geometry EXAM # 1

Winter 2008

Read through the entire test before beginning. Make sure you have 10 (plus one bonus) questions on 6 pages. You may use your calculator and ask me questions if you find a problem unclear. Please be sure to show your work. *Unsupported answers will be counted as minimally correct*.

If you have time and the inclination, please consider filling out the *Reality Check*. I am asking you to reflect on how well you think you did on the exam. The student(s) who guess(es) closest to their actual score will be given a 2 point bonus. (If you know your score exactly, the bonus increases to 3 pts.)

Good luck and remember—you know quite a lot. Rely on your instincts and common sense. If something doesn't seem right, ASK! If you have no idea how to get started on a problem, ASK! If you are stuck, ASK! The worst thing that can happen is I look at you and say "You should know that."

Problem	Grade	Reality Check	Points
1			10
2			15
3			10
4			25
5			10
6			10
7			10
8			10
Bonus			5+5
Total	/100	/100	110

1. The graph of the function f(x) is given below. Sketch the graph of -f(x+2) on the same set of axes.

(

/10)

/15)

- 2. Suppose $f(x) = \cos(x)$ and $g(x) = 2^x x$. Find the following:
 - (a) $f \cdot g$
 - (b) $f \circ g$
 - (c) $g(f^{-1}(0))$

3. If $f(x) = x^2 - 3x + 5$, evaluate and simplify the difference quotient $\frac{f(a+h) - f(a)}{h}$. (/10)

4. Assigning a value to 0° . The laws of exponents tell us that $a^{\circ} = 1$ if a is any number different from zero. They also tell us that $0^n = 0$ is n is any positive number. So what should the following limits be? Fully explain your answer. (

(a)
$$\lim_{a \to 0^+} a^0$$

(b)
$$\lim_{n \to 0^+} 0^n$$

(c)
$$\lim_{x \to \infty} \frac{1}{x}$$

(d)
$$\lim_{x \to \infty} \frac{1}{\ln x}$$

(e)
$$\lim_{x \to \infty} \left(\frac{1}{x}\right)^{\frac{1}{\ln x}}$$

(f) Bonus Question. Can you explain your findings for the limit above in (4e) analytically rather than numerically?

- 5. Describe the difference between a discontinuity that is removable and one that is nonremovable. In your explanation, give examples of the following descriptions. (10)
 - (a) function with a nonremovable discontinuity at x=2
 - (b) a function with a removable discontinuity at x = -2
 - (c) a function that has both the characteristics describe in (5a) and (5b) above.

6. Find the equation of all vertical and horizontal asymptotes for

$$y = f(x) = \frac{2+x}{2-x}.$$

/10)

- 7. (a) State the Intermediate Value Theorem.
 - (b) Verify that the Intermediate Value Theorem applies to $f(x) = x^2 + x 1$ on the interval [0, 5] with f(c) = 11.

(

/10)

/10)

(c) Find the value of c where f(c) = 11 that is guaranteed to exist by the Intermediate Value Theorem.

8. Given the function below, sketch the graph of it's derivative function.

* Bonus Question. Explain one mathematical topic that you studied to prepare for this examination but feel you did not get the opportunity to adequately show your knowledge. (/5)