NAME: \qquad
TQS 124

Calculus \& Analytic Geometry EXAM \# 1

Read through the entire test before beginning. Make sure you have 10 (plus one bonus) questions on 6 pages. You may use your calculator and ask me questions if you find a problem unclear. Please be sure to show your work. Unsupported answers will be counted as minimally correct.

If you have time and the inclination, please consider filling out the Reality Check. I am asking you to reflect on how well you think you did on the exam. The student(s) who guess(es) closest to their actual score will be given a 2 point bonus. (If you know your score exactly, the bonus increases to 3 pts.)

Good luck and remember-you know quite a lot. Rely on your instincts and common sense. If something doesn't seem right, ASK! If you have no idea how to get started on a problem, ASK! If you are stuck, ASK! The worst thing that can happen is I look at you and say "You should know that."

Problem	Grade	Reality Check	Points
1			10
2			15
3			10
4			25
5			10
6			10
7			10
8			$5+5$
Bonus			110
Total			

1. The graph of the function $f(x)$ is given below. Sketch the graph of $-f(x+2)$ on the same set of axes.

2. Suppose $f(x)=\cos (x)$ and $g(x)=2^{x}-x$. Find the following:
(a) $f \cdot g$
(b) $f \circ g$
(c) $g\left(f^{-1}(0)\right)$
3. If $f(x)=x^{2}-3 x+5$, evaluate and simplify the difference quotient $\frac{f(a+h)-f(a)}{h}$.
4. Assigning a value to 0^{0}. The laws of exponents tell us that $a^{0}=1$ if a is any number different from zero. They also tell us that $0^{n}=0$ is n is any positive number. So what should the following limits be? Fully explain your answer.
(a) $\lim _{a \rightarrow 0^{+}} a^{0}$
(b) $\lim _{n \rightarrow 0^{+}} 0^{n}$
(c) $\lim _{x \rightarrow \infty} \frac{1}{x}$
(d) $\lim _{x \rightarrow \infty} \frac{1}{\ln x}$
(e) $\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)^{\frac{1}{\ln x}}$
(f) Bonus Question. Can you explain your findings for the limit above in (4e) analytically rather than numerically?
5. Describe the difference between a discontinuity that is removable and one that is nonremovable. In your explanation, give examples of the following descriptions.
(a) function with a nonremovable discontinuity at $x=2$
(b) a function with a removable discontinuity at $x=-2$
(c) a function that has both the characteristics describe in (5a) and (5b) above.
6. Find the equation of all vertical and horizontal asymptotes for

$$
y=f(x)=\frac{2+x}{2-x} .
$$

7. (a) State the Intermediate Value Theorem.
(b) Verify that the Intermediate Value Theorem applies to $f(x)=x^{2}+x-1$ on the interval $[0,5]$ with $f(c)=11$.
(c) Find the value of c where $f(c)=11$ that is guaranteed to exist by the Intermediate Value Theorem.
8. Given the function below, sketch the graph of it's derivative function.

* Bonus Question. Explain one mathematical topic that you studied to prepare for this examination but feel you did not get the opportunity to adequately show your knowledge.

