Calculus \& Analytic Geometry II

The Fundamental Theorem(s) of Calculus

Accumulation function. Suppose that $f(x)$ is a continuous function on $[a, b]$, let

$$
g(x)=\int_{a}^{x} f(t) d t
$$

g is accumulating the signed area under f between a and x.

Use the graph above to compute the following:
$\int_{1}^{3} f(t) d t$
$\int_{1}^{5} f(t) d t$
$\int_{1}^{1} f(t) d t$
$\int_{1}^{0} f(t) d t$

The Fundamental Theorem of Calculus Part 1 (FTC1) explains the rate of change of an accumulation function.

Fundamental Theorem of Calculus I (FTC1). If f is a continuous function on $[a, b]$, then the accumulation function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$, differentiable on (a, b), and $g^{\prime}(x)=f(x)$.
Illustration. Let $g(x)=\int_{1}^{x} f(t) d t$ with f as in Example 1. Compute

$$
g^{\prime}(3)=\left.\quad \frac{d g}{d x}\right|_{x=5}=\left.\quad \frac{d}{d x}\left(\int_{1}^{x} f(t) d t\right)\right|_{x=0}=
$$

Let's prove the FTC1 for a specific function.

$$
f(t)=\quad \text { Draw a rough sketch of } f(t)
$$

Let $g(x)=\int_{a}^{x} f(t) d t=$
Find $g^{\prime}(x)$ via the definition of derivative.

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=
$$

Find the maximum and minimum values of f on $[x, x+h]$ and use the Squeeze Theorem to estimate

$$
\leq \frac{1}{h} \int_{x}^{x+h} \longrightarrow d t \leq
$$

Conclusion. So $g^{\prime}(x)=$
Question. How does our argument change if we move from a specific function like $f(t)=e^{-2 t}$ to an arbitrary function $f(t)$? (See page 382 of your book.)

Practice Problems. Compute the following derivatives:
$\frac{d}{d x} \int_{5}^{x} \frac{d t}{\ln t}$
$\frac{d}{d z} \int_{-4}^{z} 27 d t$

$$
\frac{d}{d x} \int_{1}^{x^{2}} \tan (t) \csc (t) d t
$$

Fundamental Theorem of Calculus II (FTC2). If f is a continuous function on $[a, b]$ and F is any antiderivative of f, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

Proof. This proof uses FTC1 and exploits the relationship between antiderivatives...
Let $g(x)=\int_{a}^{x} f(t) d t$. Then FTC1 implies that
$g^{\prime}(x)=$
If F is any antiderivative of f, what is the relationship between F and g ?

Now compute $F(b)-F(a)$.

Section 5.4 restates FTC2 as follows:
The Net Change Theorem. The (definite) integral of a rate of change on an interval $[a, b]$ is the net change on the interval.

Restating the Net Change Theorem more mathematically, let $F(x)$ be a continuous function on $[a, b] \ldots$

Quick check. If $w(t)$ is the weight of a child in lbs, what does $\int_{2}^{5} w^{\prime}(t) d t$ represent?

More Practice Problems. Compute the following definite integrals:

$$
\int_{5}^{8} \frac{d t}{t}
$$

$$
\int_{-4}^{4} 27 d t
$$

$$
\int_{\pi / 4}^{\pi / 3} \tan (t) \sec (t) d t
$$

IMPORTANT! Know the distinction between

$$
\int_{a}^{b} f(t) d t
$$

$$
\int_{a}^{x} f(t) d t
$$

$$
\int f(t) d t
$$

Clearly, being able to calculate antiderivatives is going to be important. We already know:

$$
\begin{array}{ll}
\int k d x= \\
\int x^{n}= \begin{cases} & n \neq-1 \\
& n=-1\end{cases} \\
\int e^{x} d x= & \int a^{x} d x= \\
\int \sin x d x= & \int \cos x d x= \\
\int \sec ^{2} x d x= & \int \csc ^{2} x d x= \\
\int \sec x \tan x d x= & \int \frac{\csc x \cot x d x=}{\sqrt{1-x^{2}}}=
\end{array}
$$

If you are facing an integral and you don't immediately know the antiderivative, rewrite, simplify, guess, and check.

1. $\int x^{-3}(x+1) d x$
2. $\int\left(1+\tan ^{2} \theta\right) d \theta$
3. $\int \cos \theta(\tan \theta+\sec \theta) d \theta$
4. $\int \frac{\csc x}{\csc x-\sin x} d x$
5. $\frac{-1}{x}-\frac{1}{2 x^{2}}+C$
6. $\tan \theta+C$
7. $-\cos \theta+\theta+C$
8. $\tan x+C$
