Calculus \& Analytic Geometry II

Applications of Integrals: Area Between Curves

Warm-up. Find the signed area between the given curves and the x-axis on the interval $[1,4]$.

$$
f(x)=e^{x} \quad g(x)=x^{2}-6 x+4 \quad h(x)=x
$$

What is the area between the following pairs of curves on the interval $[1,4]$?
$f(x)$ and $g(x) \quad f(x)$ and $h(x)$

More generally, the area A of the region bounded by the curves $y=f(x), y=g(x)$ and the lines $x=a, x=b$ where f and g are continuous and $f(x) \geq g(x)$ for all x in $[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example 1. Find the area of the region enclosed by the parabola $y=2-x^{2}$ and the line $y=-x$.

Example 2. Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x-axis and the line $y=x-2$.

Example 3. Find the area bounded by the curves $x=0, y=2^{x}, y=x^{2}$, and $x=4$.

More generally, the area A of the region bounded by the curves $y=f(x), y=g(x)$ and the lines $x=a, x=b$ where f and g are continuous for all x in $[a, b]$ is

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

Example 4. Find the area of the region bounded by the curves $y=\sin x$ and $y=\cos x$ for a period of 2π.

Sometimes it is better to think "horizontally" rather than "vertically". (In other words, think of x as a function of y rather than the other way around...)

Revisit Example 2. Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x-axis and the line $y=x-2$.

Example 5. Find the area of the region bounded by the curves $y=x^{2}, x+y=2$, and $y=0$.

Ans: $\frac{5}{6}$
Should you approach finding the following areas horizontally or vertically?

