Calculus \& Analytic Geometry II

Mean Value Theorem for Integrals and Average Value

Problem. What is the average of $98,76,95$, and $89 ?$
Suppose we want to know the average of a continuous function on an interval? Say what is the average value of the function $f(x)=2 x$ on $[1,2]$?

Definition. The average value of f on the interval $[a, b]$ is

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Problem. Find the average value of $h(x)=\cos ^{4} x \sin x$ on $[0, \pi]$.

Mean Value Theorem for Integrals. If f is continuous function on $[a, b]$, then there exists a number c in $[a, b]$ such that

$$
f(c)=f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

that is, $\int_{a}^{b} f(x) d x=f(c)(b-a)$.
Problem. For $f(x)=\frac{2 x}{\left(1+x^{2}\right)^{2}}$ find c such that $f(c)$ equals the average value of the function on [0, 2].

Mean Value Theorem for Derivatives. If f is continuous on $[a, b]$ and differentiable on (a, b), then there is a number c in the open interval so that the derivative at c equals the average rate of change on the interval $[a, b]$.

What's the relationship/connection between the two "Mean Value Theorems"? What does the Mean Value Theorem for derivatives say about accumulation functions $F(x)=\int_{a}^{x} f(t) d t$?

Calculus \& Analytic Geometry II

Techniques of Integration: Integration by Parts

Warm-up. Find $\frac{d}{d x}(x \sin x)$.

Does this tell you anything about $\int x \cos x d x$?

For every differentiation technique there is a related antidifferentiation technique. Substitution is perhaps the most useful. Integration by parts will be the counterpoint to the product rule of derivatives.

> chain rule: substitution :: product rule : integration by parts

Recall the product rule in all its glory:

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Take the antiderivative of both sides to get:

$$
\int \frac{d}{d x}[f(x) g(x)]=
$$

Leading to the integration by parts formula:

$$
\int f(x) g^{\prime}(x) d x=
$$

Many people prefer to make the substitution

$$
\begin{aligned}
& u=f(x) \\
& v=g(x)
\end{aligned}
$$

Problem Reconsider $\int x \cos x d x$ through the lens of integration by parts. What are the possible assignments for u and $d v$? Which lead to simpler integrations?
$u=$
$d v=$
$u=$
$d v=$
$u=$
$d v=$
$u=$
$d v=$

Let's try a few more problems...

1. $\int(4 x+5) e^{-x} d x$
2. $\int \frac{\ln (x)}{x^{3}} d x$
3. $\int \sin x \cos x d x$

Thought: Things can get ugly. Be aware of your surroundings at all times.

Multiple Applications: Although integration by parts should yield a simplified integral, it does not always simplify the problem enough. It may be necessary to use integration by parts several times.

Find $\int x^{2} \sin (x) d x$.

Find $\int \cos (x) e^{x} d x$.

Find $\int \cos (\ln (x)) d x$.

As time allows:

$$
\int \sin ^{-1} x d x
$$

$$
\int t \sec ^{2} 2 t d t
$$

$$
\int t^{3} e^{-t^{2}} d t
$$

