Spring 2008

Quinn

Calculus & Analytic Geometry II

Techniques of Integration: Partial Fractions

Warm-up. Add the following fractions together: $\frac{2}{x+1} - \frac{3}{x-3}$

Use this to determine $\int \frac{5x-3}{x^2-2x-3} dx$.

How can the fact that $\frac{6x+7}{(x+2)^2} = \frac{6}{x+2} - \frac{5}{(x+2)^2}$ be used to determine a *less-than-obvious* integral...

Big idea. To integrate a rational function (a.k.a. a quotient of polynomials), we try to rewrite it as a sum of simpler fractions.

We want to integrate f(x)/g(x)

- If degree of f is greater than or equal to degree of g. Divide.
- If degree of f is less than the degree of g.
 - Factor g(x) into irreducible factors (either linear or quadratic). Ex. g(x) = (x-1)(x+1)(x+3) $g(x) = (x+2)^2$ $g(x) = x(x^2+1)$ $g(x) = (x^2+x+1)(x^2-x+1)$
 - Use factors to determine the form of simpler parts (see examples on the next page).

Find a partial fraction decomposition for

1.
$$\frac{8}{(x-1)(x+1)(x+3)}dx$$
 (distinct linear factors)

2.
$$\frac{x-1}{(x+2)^2}dx$$
 (repeated linear factors)

3.
$$\frac{1}{x(x^2+1)}dx$$
 (distinct linear and quadratic factors)

4.
$$\frac{2x}{(x^2+x+1)(x^2-x+1)}dx \ (distinct \ quadratic \ factors)$$

Solve

$$1. \int \frac{8}{(x-1)(x+1)(x+3)} dx = \int \left(\frac{1}{x-1} - \frac{2}{1+x} + \frac{1}{x+3}\right) dx$$

$$2. \int \frac{x-1}{(x+2)^2} dx = \int \left(\frac{-3}{(x+2)^2} + \frac{1}{x+2}\right) dx$$

$$3. \int \frac{1}{x(x^2+1)} dx = \int \left(\frac{1}{x} - \frac{x}{1+x^2}\right) dx$$

$$4. \int \frac{2x}{(x^2+x+1)(x^2-x+1)} dx = \int \left(\frac{1}{1-x+x^2} - \frac{1}{1+x+x^2}\right) dx$$

TQS 125

Spring 2008

CALCULUS & ANALYTIC GEOMETRY II

Strategy for Integration

-Simplify the integrand if possible. (Remember algebra is your friend.)

-Look for an *obvious* substitution. (Okay maybe an even not so obvious one would do as well. The point is think about substitution first. There are a finite number of assignments for u. Mentally think through them.)

-Depending on the form of the integrand you might try integration by parts, partial fractions, trig substitutions.

-If nothing has worked...try again. There are only two basic methods: substitution and parts. Perhaps try a little algebra and start again.

Try these problems...

1.
$$\int \frac{\sin^3 x}{\cos x} dx$$

2.
$$\int \frac{e^{2t}}{1 + e^{4t}} dt$$

3.
$$\int \frac{\ln x}{x\sqrt{1 + (\ln x)^2}} dx$$

4.
$$\int \sin 4x \cos 3x dx$$

5.
$$\int \frac{x}{x^4 - a^4} dx$$

6.
$$\int x \sin^2 x \cos x dx$$