Calculus \& Analytic Geometry II

Techniques of Integration: Partial Fractions

Warm-up. Add the following fractions together: $\frac{2}{x+1}-\frac{3}{x-3}$

Use this to determine $\int \frac{5 x-3}{x^{2}-2 x-3} d x$.

How can the fact that $\frac{6 x+7}{(x+2)^{2}}=\frac{6}{x+2}-\frac{5}{(x+2)^{2}}$ be used to determine a less-than-obvious integral...

Big idea. To integrate a rational function (a.k.a. a quotient of polynomials), we try to rewrite it as a sum of simpler fractions.

We want to integrate $f(x) / g(x)$

- If degree of f is greater than or equal to degree of g. Divide.
- If degree of f is less than the degree of g.
- Factor $g(x)$ into irreducible factors (either linear or quadratic).

Ex. $g(x)=(x-1)(x+1)(x+3)$

$$
g(x)=(x+2)^{2} \quad g(x)=x\left(x^{2}+1\right)
$$

$$
g(x)=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)
$$

- Use factors to determine the form of simpler parts (see examples on the next page).

Find a partial fraction decomposition for

1. $\frac{8}{(x-1)(x+1)(x+3)} d x$ (distinct linear factors)
2. $\frac{x-1}{(x+2)^{2}} d x$ (repeated linear factors)
3. $\frac{1}{x\left(x^{2}+1\right)} d x$ (distinct linear and quadratic factors)
4. $\frac{2 x}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} d x$ (distinct quadratic factors)

Solve

1. $\int \frac{8}{(x-1)(x+1)(x+3)} d x=\int\left(\frac{1}{x-1}-\frac{2}{1+x}+\frac{1}{x+3}\right) d x$
2. $\int \frac{x-1}{(x+2)^{2}} d x=\int\left(\frac{-3}{(x+2)^{2}}+\frac{1}{x+2}\right) d x$
3. $\int \frac{1}{x\left(x^{2}+1\right)} d x=\int\left(\frac{1}{x}-\frac{x}{1+x^{2}}\right) d x$
4. $\int \frac{2 x}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)} d=\int\left(\frac{1}{1-x+x^{2}}-\frac{1}{1+x+x^{2}}\right) d x$

Calculus \& Analytic Geometry II

Strategy for Integration

-Simplify the integrand if possible. (Remember algebra is your friend.)
-Look for an obvious substitution. (Okay maybe an even not so obvious one would do as well. The point is think about substitution first. There are a finite number of assignments for u. Mentally think through them.)
-Depending on the form of the integrand you might try integration by parts, partial fractions, trig substitutions.
-If nothing has worked...try again. There are only two basic methods: substitution and parts. Perhaps try a little algebra and start again.

Try these problems...

1. $\int \frac{\sin ^{3} x}{\cos x} d x$
2. $\int \frac{e^{2 t}}{1+e^{4 t}} d t$
3. $\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x$
4. $\int \sin 4 x \cos 3 x d x$
5. $\int \frac{x}{x^{4}-a^{4}} d x$
6. $\int x \sin ^{2} x \cos x d x$
