Calculus \& Analytic Geometry II

What to do about troublesome integrals

Warm-up. Find an antiderivative of $\frac{e^{x}}{x}$.

One possible answer is $F(x)=\int_{0}^{x} \frac{e^{t}}{t} d t$.
The majority of elementary functions don't have elementary antiderivatives. Stewart, p. 488

$$
e^{x^{2}} \quad \sin \left(x^{2}\right) \quad \cos \left(e^{x}\right) \quad \frac{1}{\ln x}
$$

But we still might want to calculate definite integrals involving these functions. What should we do?

Big idea-Numerical Integration Partition the interval of integration, replace troublesome function by a closely fitting polynomial on each subinterval, integrate polynomial, add results.

Calculus \& Analytic Geometry II

Trapezoidal Approximations

Find the area of a trapezoid with base Δx and heights y_{i-1} and y_{i}.

Let T be the approximation of $\int_{a}^{b} f(x) d x$ by n trapezoids where $a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b$ are the subdivision points and $y_{i}=f\left(x_{i}\right)$ for $i=1,2, \ldots, n$. Then

The Trapezoid Rule To approximate $\int_{a}^{b} f(x) d x$, use

$$
T=\frac{\Delta x}{2}\left(y_{0}+2 y_{1}+2 y_{2}+\cdots+2 y_{n-1}+y_{n}\right) .
$$

The y_{i} s are the values of f at the partition points $x_{0}, x_{1}, \ldots x_{n}$ where $\Delta x=\frac{(b-a)}{n}$.
Example 1. Use the Trapezoid Rule with $n=4$ to estimate $\int_{1}^{2} x^{2} d x$. Compare this estimate with the exact solution.

Calculus \& Analytic Geometry II

Simpson's Rule: Approximations Using Parabolas

Warm-up. Any three points define a parabola. Find the parabola that passes through the points $(-1,4),(0,1)$, and $(1,2)$.

Find the area under the parabola $y=A x^{2}+B x+C$ passing through the points $\left(-h, y_{0}\right),\left(0, y_{1}\right)$, and $\left(h, y_{2}\right)$. Express your answer in terms of y_{0}, y_{1}, and y_{2}.

How would the area change if the parabola were shifted horizontally?
So what is the area under the parabola $y=A x^{2}+B x+C$ passing through the points $\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$?

Computing the area under all the parabolas and adding the results gives the approximation

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)+
$$

Simpson's Rule. To approximate $\int_{a}^{b} f(x) d x$, use

$$
S=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) .
$$

The y_{i} s are the values of f at the partition points $x_{0}, x_{1}, \ldots x_{n}$ where $\Delta x=\frac{(b-a)}{n}$.
Example 2. Use Simpson's Rule with $n=4$ to approximate $\int_{0}^{2} 5 x^{4} d x$ and compare your result to the exact solution.

Ans: $32 \frac{1}{12}$, less than 3/10 \%
Error Estimates in the Trapezoidal and Simpson's Rules. If $f^{\prime \prime}$ is continuous and M is any upper bound for the values of $\left|f^{\prime \prime}\right|$ on $[a, b]$, the the error E_{T} in the trapezoidal approximation of the integral of f from a to b for n steps satisfies the inequality

$$
\left|E_{T}\right| \leq \frac{M(b-a)^{3}}{12 n^{2}} . \quad \text { Trapezoid }
$$

If $f^{(4)}$ is continuous and M is any upper bound for the values of $\left|f^{(4)}\right|$ on $[a, b]$, then the error E_{S} in the Simpson's Rule approximation of the integral of F from a to b for n steps satisfies the inequality

$$
\left|E_{S}\right| \leq \frac{M(b-a)^{5}}{180 n^{4}} . \quad \text { Simpson's }
$$

Example 2 continued. Approximate the error in example 2 using the above estimate.

Example 3. How large should n be to guarantee that Simpson's Rule approximation to $\int_{0}^{1} e^{x^{2}} d x$ is accurate to within .00001 ?

$$
\begin{array}{r}
f^{(4)}=\left(12+48 x^{2}+16 x^{4}\right) e^{x^{2}} \\
\text { Ans: } n \geq 20
\end{array}
$$

