Calculus \& Analytic Geometry II

Arc Length

Big Idea. To compute the length of the curve $y=f(x)$ from $x=a$ to $x=b$ (where $a<b$), divide the curve into small pieces, each one approximately a straight line.

$\Delta s \approx d s=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \approx$
Arc length $\approx \sum$
For $a<b$, the arc length of the curve $y=f(x)$ from $x=a$ to $x=b$ is given by

$$
\text { Arc length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

For $c<d$, the arc length of the curve $x=g(y)$ from $y=c$ to $y=d$ is given by

$$
\text { Arc length }=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Examples. Set up and evaluate integrals to compute the lengths of the indicated curves

1. $y=x^{3}$ from $x=0$ to $x=5$
2. $y^{2}=4(x+4)^{3}, 0 \leq x \leq 2, y>0$.
3. $y=\ln \left(1-x^{2}\right), 0 \leq x \leq 1 / 2$.

A new analogy
area: arc length::accumulation function: arc length function
Arc Length Function accumulates arc length from a fixed point.

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t .
$$

Question. What is the rate of change of the arc length function $\frac{d s}{d x}$?

Problem. Find the arc length function for the curve $y=\sin ^{-1} x+\sqrt{1-x^{2}}$ starting with the starting point $(0,1)$.

In general, integrals arising from arc length problems are difficult! Numerical techniques are often called for.

Calculus \& Analytic Geometry II

Surfaces of Revolution

Everything Changes-Everything Stays the Same. To find the volume of a solid of revolution, we created a $d V$ by rotating a small rectangular area, $d A$ - creating either a disk, washer, or shell. Then we added them together in a Riemann sum, took the limit, and got a definite integral. To find the surface area of a solid of revolution, we create a $d A$ by rotating a small piece of arc length $d s$ - creating a slice of a cone. We then add them together in a Riemann sum, take a limit, and get a definite integral.

$2 \pi r h$

$\pi r l$

$2 \pi\left(\frac{r_{1}+r_{2}}{2}\right) l$

So to find a surface area of revolution, break the surface into n "slices of cones" and add the areas.

(a) Rotation about x-axis: $S=\int 2 \pi y d s$ © Thomson Higher Education

(b) Rotation about y-axis: $S=\int 2 \pi x d s$

Problems.

Rotate the curve $y=x^{3}$ from $0 \leq x \leq 2$ about the x-axis and find the resulting surface area.
Rotate the curve $y=1-x^{2}$ from $0 \leq x \leq 1$ about the y-axis and find the resulting surface area.

