Calculus \& Analytic Geometry II

Moments and Center of Mass

Big Idea. The center of mass is the balance point.

Strategy. Break up the physical quantity into a large number of small parts, approximate each small part, add the results, take the limit, evaluate the resulting integral.

Archimedes and the Law of the Lever.

Masses m_{1} and m_{2} balance if $m_{1} d_{1}=m_{2} d_{2}$.
Example. Find the balance point on a 12 foot board with a 20 lb kid on one end and an 80 lb kid on the other.

General solution for two masses. Introduce a coordinate system.

The center of mass will be $\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$
$m_{1} x_{1}, m_{2} x_{2}$ are called the moments of the masses m_{1} and m_{2} with respect to the origin.
$M=m_{1} x_{1}+m_{2} x_{2}$ is called the moment of the system.
$m=m_{1}+m_{2}$ is the total mass.
In general if we have n point masses $m_{i}(i=1,2, \ldots, n)$ located on the x axis at point x_{i} $(i=1,2, \ldots, n)$ then

$$
\bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}} .
$$

Example. Find the moment and center of mass of the system with $m_{1}=6, m_{2}=5, m_{3}=10$ and $x_{1}=1, x_{2}=3, x_{3}=-2$.

What happens when the masses are spread out in the plane? Example $m_{1}=6, m_{2}=5, m_{3}=10$ located at points $P_{1}(1,5), P_{2}(3,-2), P_{3}(-2,-1)$ respectively.
\bar{x} represents the line parallel to the y-axis that balances the weights.
\bar{y} represents the line parallel to the x-axis that balances the weights.
The center of mass is (\bar{x}, \bar{y}).

$$
\bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}
$$

numerator is M_{y}, moment of the system about the y-axis measures tendency to rotate about the y-axis.

$$
\bar{y}=\frac{\sum_{i=1}^{n} m_{i} y_{i}}{\sum_{i=1}^{n} m_{i}}
$$

numerator is M_{x}, moment of the system about the x-axis measures tendency to rotate about the x-axis.

Calculus \& Analytic Geometry II

Lamina

Definition. A lamina is thin plate, sheet, or layer.
We will be considering lamina with uniform density ρ and seeking ways to determine its center of mass (sometimes called centroid.)

Consider a rectangle. What are the coordinates of its centroid?

This is the symmetry principle. If a region is symmetric across a line ℓ then the centroid lies on ℓ.
Suppose A is the region trapped between two curves $f(x)$ and $g(x)$. We can approximate the moment M_{y} by cutting the region into rectangular strips along the x-axis.

$$
\begin{aligned}
M_{y} & \approx \sum_{i=1}^{n} \text { moment for } i \text { th slice } \\
& =\sum_{i=1}^{n}(\text { mass of } i \text { th slice })(\text { distance of centroid to } y \text {-axis })
\end{aligned}
$$

$M_{x} \approx \sum_{i=1}^{n}$ moment for i th slice
$=\sum_{i=1}^{n}($ mass of i th slice $)($ distance of centroid to x-axis $)$

$$
m=\int_{a}^{b} \rho(f(x)-g(x)) d x
$$

$\bar{x}=\frac{M_{y}}{m}$

$$
\bar{y}=\frac{M_{x}}{m}
$$

Reiterating...

$$
\bar{x}=\frac{1}{A} \int_{a}^{b} x[f(x)-g(x)] d x \quad \bar{y}=\frac{1}{A} \int_{a}^{b} \frac{1}{2}\left[(f(x))^{2}-(g(x))^{2}\right] d x
$$

When the density is constant over the lamina, it is irrelevant in the calculation! Only the area matters.

Examples. Find the center of mass for each of the given regions.

1. The region trapped between $f(x)=\sqrt{x}$ and $g(x)=x^{2}$.
2. The upper half of a circle of radius r.
