Solutions 8.3--Spring 2008

21. The moment M of the system about the origin is $M = \sum_{i=1}^{2} m_i x_i = m_1 x_1 + m_2 x_2 = 40 \cdot 2 + 30 \cdot 5 = 230$.

The mass m of the system is $m = \sum_{i=1}^{2} m_i = m_1 + m_2 = 40 + 30 = 70$.

The center of mass of the system is $M/m = \frac{230}{70} = \frac{23}{7}$.

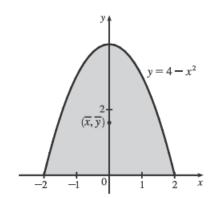
22.
$$M = m_1x_1 + m_2x_2 + m_3x_3 = 25(-2) + 20(3) + 10(7) = 80; \ \overline{x} = M/(m_1 + m_2 + m_3) = \frac{80}{55} = \frac{16}{11}$$

25. Since the region in the figure is symmetric about the y-axis, we know that $\overline{x} = 0$. The region is "bottom-heavy," so we know that $\overline{y} < 2$, and we might guess that $\overline{y} = 1.5$.

$$A = \int_{-2}^{2} (4 - x^2) dx = 2 \int_{0}^{2} (4 - x^2) dx = 2 \left[4x - \frac{1}{3}x^3 \right]_{0}^{2}$$
$$= 2 \left(8 - \frac{8}{3} \right) = \frac{32}{3}.$$

 $\overline{x} = \frac{1}{A} \int_{-2}^{2} x(4-x^2) dx = 0$ since $f(x) = x(4-x^2)$ is an odd

function (or since the region is symmetric about the y-axis).



$$\overline{y} = \frac{1}{A} \int_{-2}^{2} \frac{1}{2} (4 - x^{2})^{2} dx = \frac{3}{32} \cdot \frac{1}{2} \cdot 2 \int_{0}^{2} (16 - 8x^{2} + x^{4}) dx = \frac{3}{32} \left[16x - \frac{8}{3}x^{3} + \frac{1}{5}x^{5} \right]_{0}^{2}$$
$$= \frac{3}{22} \left(32 - \frac{64}{2} + \frac{32}{5} \right) = 3 \left(1 - \frac{2}{2} + \frac{1}{5} \right) = 3 \left(\frac{8}{15} \right) = \frac{8}{5}$$

Thus, the centroid is $(\overline{x}, \overline{y}) = (0, \frac{8}{5})$.

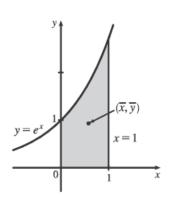
27. The region in the figure is "right-heavy" and "bottom-heavy," so we know $\overline{x} > 0.5$ and $\overline{y} < 1$, and we might guess that $\overline{x} = 0.6$ and $\overline{y} = 0.9$.

$$A = \int_0^1 e^x dx = [e^x]_0^1 = e - 1.$$

$$\overline{x} = \frac{1}{A} \int_0^1 x e^x \, dx = \frac{1}{e-1} [x e^x - e^x]_0^1 \qquad \text{[by parts]}$$
$$= \frac{1}{e-1} [0 - (-1)] = \frac{1}{e-1}.$$

$$\overline{y} = \frac{1}{4} \int_0^1 \frac{1}{2} (e^x)^2 dx = \frac{1}{e-1} \cdot \frac{1}{4} \left[e^{2x} \right]_0^1 = \frac{1}{4(e-1)} (e^2 - 1) = \frac{e+1}{4}.$$

Thus, the centroid is $(\overline{x},\overline{y})=\left(\frac{1}{e-1},\frac{e+1}{4}\right)\approx (0.58,0.93)$.



Solutions 8.3--Spring 2008

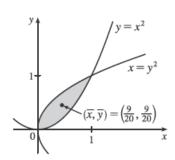
29.
$$A = \int_0^1 (x^{1/2} - x^2) dx = \left[\frac{2}{3} x^{3/2} - \frac{1}{3} x^3 \right]_0^1 = \left(\frac{2}{3} - \frac{1}{3} \right) - 0 = \frac{1}{3}.$$

$$\overline{x} = \frac{1}{A} \int_0^1 x (x^{1/2} - x^2) dx = 3 \int_0^1 (x^{3/2} - x^3) dx$$

$$= 3 \left[\frac{2}{5} x^{5/2} - \frac{1}{4} x^4 \right]_0^1 = 3 \left(\frac{2}{5} - \frac{1}{4} \right) = 3 \left(\frac{3}{20} \right) = \frac{9}{20}.$$

$$\overline{y} = \frac{1}{A} \int_0^1 \frac{1}{2} \left[(x^{1/2})^2 - (x^2)^2 \right] dx = 3 \left(\frac{1}{2} \right) \int_0^1 (x - x^4) dx$$

$$= \frac{3}{2} \left[\frac{1}{2} x^2 - \frac{1}{5} x^5 \right]_0^1 = \frac{3}{2} \left(\frac{1}{2} - \frac{1}{5} \right) = \frac{3}{2} \left(\frac{3}{10} \right) = \frac{9}{20}.$$



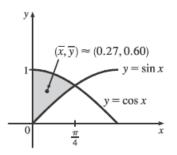
Thus, the centroid is $(\overline{x}, \overline{y}) = (\frac{9}{20}, \frac{9}{20})$.

31.
$$A = \int_0^{\pi/4} (\cos x - \sin x) \, dx = \left[\sin x + \cos x \right]_0^{\pi/4} = \sqrt{2} - 1.$$

$$\overline{x} = A^{-1} \int_0^{\pi/4} x (\cos x - \sin x) \, dx$$

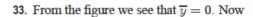
$$= A^{-1} \left[x (\sin x + \cos x) + \cos x - \sin x \right]_0^{\pi/4} \quad \text{[integration by parts]}$$

$$= A^{-1} \left(\frac{\pi}{4} \sqrt{2} - 1 \right) = \frac{\frac{1}{4} \pi}{\sqrt{2} - 1}.$$



$$\overline{y} = A^{-1} \int_0^{\pi/4} \frac{1}{2} (\cos^2 x - \sin^2 x) \, dx = \frac{1}{2A} \int_0^{\pi/4} \cos 2x \, dx = \frac{1}{4A} \left[\sin 2x \right]_0^{\pi/4} = \frac{1}{4A} = \frac{1}{4 \left(\sqrt{2} - 1 \right)}.$$

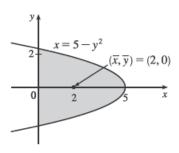
Thus, the centroid is $(\overline{x},\overline{y})=\left(\frac{\pi\sqrt{2}-4}{4(\sqrt{2}-1)},\frac{1}{4(\sqrt{2}-1)}\right)pprox (0.27,0.60).$



$$A = \int_0^5 2\sqrt{5-x} \, dx = 2\left[-\frac{2}{3}(5-x)^{3/2}\right]_0^5 = 2\left(0+\frac{2}{3}\cdot 5^{3/2}\right) = \frac{20}{3}\sqrt{5},$$
so
$$\overline{x} = \frac{1}{A}\int_0^5 x\left[\sqrt{5-x} - \left(-\sqrt{5-x}\right)\right] \, dx = \frac{1}{A}\int_0^5 2x\sqrt{5-x} \, dx$$

$$= \frac{1}{A}\int_0^0 2\left(5-u^2\right)u(-2u) \, du \quad \begin{bmatrix} u = \sqrt{5-x}, & x = 5-u^2, \\ u^2 = 5-x, & dx = -2u \, du \end{bmatrix}$$

$$= \frac{4}{A}\int_0^{\sqrt{5}} u^2(5-u^2) \, du = \frac{4}{A}\left[\frac{5}{3}u^3 - \frac{1}{5}u^5\right]_0^{\sqrt{5}} = \frac{3}{5\sqrt{5}}\left(\frac{25}{3}\sqrt{5} - 5\sqrt{5}\right) = 5 - 3 = 2.$$



Thus, the centroid is $(\overline{x}, \overline{y}) = (2, 0)$.

Solutions 8.3--Spring 2008

40. Divide the lamina into three rectangles with masses 2, 2 and 6, with centroids $\left(-\frac{3}{2},1\right)$, $\left(0,\frac{1}{2}\right)$ and $\left(2,\frac{3}{2}\right)$, respectively. The total mass of the lamina is 10. So, using Formulas 5, 6, and 7, we have

$$\overline{x} = \frac{M_y}{m} = \frac{1}{m} \sum_{i=1}^{3} m_i x_i = \frac{1}{10} \left[2 \left(-\frac{3}{2} \right) + 2(0) + 6(2) \right] = \frac{1}{10} (9)$$

and

$$\overline{y} = \frac{M_x}{m} = \frac{1}{m} \sum_{i=1}^{3} m_i y_i = \frac{1}{10} \left[2(1) + 2\left(\frac{1}{2}\right) + 6\left(\frac{3}{2}\right) \right] = \frac{1}{10} (12).$$

Thus, the centroid is $(\overline{x}, \overline{y}) = (\frac{9}{10}, \frac{6}{5})$.

41. Divide the lamina into two triangles and one rectangle with respective masses of 2, 2 and 4, so that the total mass is 8. Using the result of Exercise 39, the triangles have centroids $\left(-1,\frac{2}{3}\right)$ and $\left(1,\frac{2}{3}\right)$. The centroid of the rectangle (its center) is $\left(0,-\frac{1}{2}\right)$.

So, using Formulas 5 and 7, we have $\overline{y} = \frac{M_x}{m} = \frac{1}{m} \sum_{i=1}^{3} m_i \ y_i = \frac{1}{8} \left[2 \left(\frac{2}{3} \right) + 2 \left(\frac{2}{3} \right) + 4 \left(-\frac{1}{2} \right) \right] = \frac{1}{8} \left(\frac{2}{3} \right) = \frac{1}{12}$, and $\overline{x} = 0$,

since the lamina is symmetric about the line x=0. Thus, the centroid is $(\overline{x},\overline{y})=\left(0,\frac{1}{12}\right)$.