Solutions 9.4---Spring 2008

- 1. (a) $dP/dt = 0.05P 0.0005P^2 = 0.05P(1 0.01P) = 0.05P(1 P/100)$. Comparing to Equation 1, dP/dt = kP(1 P/K), we see that the carrying capacity is K = 100 and the value of k is 0.05.
 - (b) The slopes close to 0 occur where P is near 0 or 100. The largest slopes appear to be on the line P = 50. The solutions are increasing for $0 < P_0 < 100$ and decreasing for $P_0 > 100$.

All of the solutions approach P=100 as t increases. As in part (b), the solutions differ since for $0 < P_0 < 100$ they are increasing, and for $P_0 > 100$ they are decreasing. Also, some have an IP and some don't. It appears that the solutions which have $P_0 = 20$ and $P_0 = 40$ have inflection points at P = 50.

- (d) The equilibrium solutions are P=0 (trivial solution) and P=100. The increasing solutions move away from P=0 and all nonzero solutions approach P=100 as $t\to\infty$.
- 3. (a) $\frac{dy}{dt} = ky \left(1 \frac{y}{K}\right) \implies y(t) = \frac{K}{1 + Ae^{-kt}} \text{ with } A = \frac{K y(0)}{y(0)}. \text{ With } K = 8 \times 10^7, k = 0.71, \text{ and } A = \frac{K y(0)}{2} = \frac{1}{2} \left(1 \frac{y}{K}\right)$

$$y(0) = 2 \times 10^7$$
, we get the model $y(t) = \frac{8 \times 10^7}{1 + 3e^{-0.71t}}$, so $y(1) = \frac{8 \times 10^7}{1 + 3e^{-0.71}} \approx 3.23 \times 10^7$ kg.

(b)
$$y(t) = 4 \times 10^7 \implies \frac{8 \times 10^7}{1 + 3e^{-0.71t}} = 4 \times 10^7 \implies 2 = 1 + 3e^{-0.71t} \implies e^{-0.71t} = \frac{1}{3} \implies e^{-0.71t} = \frac{1}{3}$$

$$-0.71t = \ln \frac{1}{3} \quad \Rightarrow \quad t = \frac{\ln 3}{0.71} \approx 1.55 \text{ years}$$

Solutions 9.4---Spring 2008

- 7. (a) Our assumption is that $\frac{dy}{dt} = ky(1-y)$, where y is the fraction of the population that has heard the rumor.
 - (b) Using the logistic equation (1), $\frac{dP}{dt} = kP\left(1 \frac{P}{K}\right)$, we substitute $y = \frac{P}{K}$, P = Ky, and $\frac{dP}{dt} = K\frac{dy}{dt}$,

to obtain $K \frac{dy}{dt} = k(Ky)(1-y) \Leftrightarrow \frac{dy}{dt} = ky(1-y)$, our equation in part (a).

Now the solution to (1) is $P(t) = \frac{K}{1 + Ae^{-kt}}$, where $A = \frac{K - P_0}{P_0}$.

We use the same substitution to obtain $Ky = \frac{K}{1 + \frac{K - Ky_0}{Ky_0}e^{-kt}} \Rightarrow y = \frac{y_0}{y_0 + (1 - y_0)e^{-kt}}$.

Alternatively, we could use the same steps as outlined in the solution of Equation 5.

(c) Let t be the number of hours since 8 AM. Then $y_0 = y(0) = \frac{80}{1000} = 0.08$ and $y(4) = \frac{1}{2}$, so

$$\frac{1}{2} = y(4) = \frac{0.08}{0.08 + 0.92e^{-4k}}. \text{ Thus, } 0.08 + 0.92e^{-4k} = 0.16, e^{-4k} = \frac{0.08}{0.92} = \frac{2}{23}, \text{ and } e^{-k} = \left(\frac{2}{23}\right)^{1/4},$$

so $y = \frac{0.08}{0.08 + 0.92(2/23)^{t/4}} = \frac{2}{2 + 23(2/23)^{t/4}}$. Solving this equation for t, we get

$$2y + 23y \left(\frac{2}{23}\right)^{t/4} = 2 \quad \Rightarrow \quad \left(\frac{2}{23}\right)^{t/4} = \frac{2-2y}{23y} \quad \Rightarrow \quad \left(\frac{2}{23}\right)^{t/4} = \frac{2}{23} \cdot \frac{1-y}{y} \quad \Rightarrow \quad \left(\frac{2}{23}\right)^{t/4-1} = \frac{1-y}{y}.$$

It follows that $\frac{t}{4} - 1 = \frac{\ln[(1-y)/y]}{\ln\frac{2}{23}}$, so $t = 4\left[1 + \frac{\ln((1-y)/y)}{\ln\frac{2}{23}}\right]$.

When y=0.9, $\frac{1-y}{y}=\frac{1}{9}$, so $t=4\left(1-\frac{\ln 9}{\ln \frac{2}{23}}\right)\approx 7.6$ h or 7 h 36 min. Thus, 90% of the population will have heard

the rumor by 3:36 PM.

- $9. (a) \frac{dP}{dt} = kP \left(1 \frac{P}{K} \right) \quad \Rightarrow \quad \frac{d^2P}{dt^2} = k \left[P \left(-\frac{1}{K} \frac{dP}{dt} \right) + \left(1 \frac{P}{K} \right) \frac{dP}{dt} \right] = k \frac{dP}{dt} \left(-\frac{P}{K} + 1 \frac{P}{K} \right)$ $= k \left[kP \left(1 \frac{P}{K} \right) \right] \left(1 \frac{2P}{K} \right) = k^2 P \left(1 \frac{P}{K} \right) \left(1 \frac{2P}{K} \right)$
 - (b) P grows fastest when P' has a maximum, that is, when P'' = 0. From part (a), $P'' = 0 \Leftrightarrow P = 0, P = K$, or P = K/2. Since 0 < P < K, we see that $P'' = 0 \Leftrightarrow P = K/2$.