3. (a)
$$g(x) = \int_0^x f(t) dt$$
.

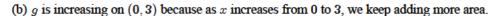
$$g(0) = \int_0^0 f(t) dt = 0$$

$$g(1) = \int_0^1 f(t) dt = 1 \cdot 2 = 2$$
 [rectangle],

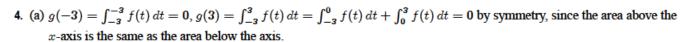
$$\begin{split} g(2) &= \int_0^2 f(t) \, dt = \int_0^1 f(t) \, dt + \int_1^2 f(t) \, dt = g(1) + \int_1^2 f(t) \, dt \\ &= 2 + 1 \cdot 2 + \frac{1}{2} \cdot 1 \cdot 2 = 5 \qquad \text{[rectangle plus triangle]}, \end{split}$$

$$g(3) = \int_0^3 f(t) dt = g(2) + \int_2^3 f(t) dt = 5 + \frac{1}{2} \cdot 1 \cdot 4 = 7,$$

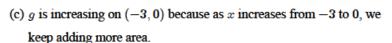
$$g(6) = g(3) + \int_3^6 f(t) dt$$
 [the integral is negative since f lies under the x -axis]
= $7 + \left[-\left(\frac{1}{2} \cdot 2 \cdot 2 + 1 \cdot 2\right) \right] = 7 - 4 = 3$

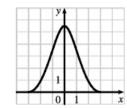


(c) g has a maximum value when we start subtracting area; that is, at x = 3.



(b) From the graph, it appears that to the nearest
$$\frac{1}{2}$$
, $g(-2) = \int_{-3}^{-2} f(t) dt \approx 1$, $g(-1) = \int_{-3}^{-1} f(t) dt \approx 3\frac{1}{2}$, and $g(0) = \int_{-3}^{0} f(t) dt \approx 5\frac{1}{2}$.





(e)

(d)

(d) g has a maximum value when we start subtracting area; that is, at x = 0.

(f) The graph of g'(x) is the same as that of f(x), as indicated by FTC1.

13. Let
$$u = \frac{1}{x}$$
. Then $\frac{du}{dx} = -\frac{1}{x^2}$. Also, $\frac{dh}{dx} = \frac{dh}{du} \frac{du}{dx}$, so
$$h'(x) = \frac{d}{dx} \int_{0}^{1/x} \arctan t \, dt = \frac{d}{du} \int_{0}^{u} \arctan t \, dt \cdot \frac{du}{dx} = \arctan u \, \frac{du}{dx} = -\frac{\arctan(1/x)}{x^2}.$$

14. Let
$$u = x^2$$
. Then $\frac{du}{dx} = 2x$. Also, $\frac{dh}{dx} = \frac{dh}{du}\frac{du}{dx}$, so

$$h'(x) = \frac{d}{dx} \int_{0}^{x^{2}} \sqrt{1 + r^{3}} dr = \frac{d}{du} \int_{0}^{u} \sqrt{1 + r^{3}} dr \cdot \frac{du}{dx} = \sqrt{1 + u^{3}} (2x) = 2x \sqrt{1 + (x^{2})^{3}} = 2x \sqrt{1 + x^{6}}.$$

41. If
$$f(x) = \begin{cases} \sin x & \text{if } 0 \le x < \pi/2 \\ \cos x & \text{if } \pi/2 \le x \le \pi \end{cases}$$
 then

$$\int_0^\pi f(x) \, dx = \int_0^{\pi/2} \sin x \, dx + \int_{\pi/2}^\pi \cos x \, dx = \left[-\cos x \right]_0^{\pi/2} + \left[\sin x \right]_{\pi/2}^\pi = -\cos \frac{\pi}{2} + \cos 0 + \sin \pi - \sin \frac{\pi}{2} = -0 + 1 + 0 - 1 = 0$$

Note that f is integrable by Theorem 3 in Section 5.2.

Winter 2008, Section 5.3

42. If
$$f(x) = \begin{cases} 2 & \text{if } -2 \le x \le 0 \\ 4 - x^2 & \text{if } 0 < x \le 2 \end{cases}$$
 then
$$\int_{-2}^{2} f(x) \, dx = \int_{-2}^{0} 2 \, dx + \int_{0}^{2} (4 - x^2) \, dx = \left[2x \right]_{-2}^{0} + \left[4x - \frac{1}{3}x^3 \right]_{0}^{2} = \left[0 - (-4) \right] + \left(\frac{16}{3} - 0 \right) = \frac{28}{3}$$

Note that f is integrable by Theorem 3 in Section 5.2