Solution 7.8-Winter 2008

- 2. (a) Since $y = \frac{1}{2x-1}$ is defined and continuous on [1,2], $\int_1^2 \frac{1}{2x-1} dx$ is proper.
 - (b) Since $y = \frac{1}{2x-1}$ has an infinite discontinuity at $x = \frac{1}{2}$, $\int_0^1 \frac{1}{2x-1} dx$ is a Type II improper integral.
 - (c) Since $\int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} dx$ has an infinite interval of integration, it is an improper integral of Type I.
 - (d) Since $y = \ln(x-1)$ has an infinite discontinuity at x = 1, $\int_1^2 \ln(x-1) dx$ is a Type II improper integral.
- 7. $\int_{-\infty}^{-1} \frac{1}{\sqrt{2-w}} \, dw = \lim_{t \to -\infty} \int_{t}^{-1} \frac{1}{\sqrt{2-w}} \, dw = \lim_{t \to -\infty} \left[-2\sqrt{2-w} \, \right]_{t}^{-1} \qquad [u = 2 w, du = -dw]$ $= \lim_{t \to -\infty} \left[-2\sqrt{3} + 2\sqrt{2-t} \, \right] = \infty. \qquad \text{Divergent}$
- 8. $\int_0^\infty \frac{x}{(x^2+2)^2} dx = \lim_{t \to \infty} \int_0^t \frac{x}{(x^2+2)^2} dx = \lim_{t \to \infty} \frac{1}{2} \left[\frac{-1}{x^2+2} \right]_0^t = \frac{1}{2} \lim_{t \to \infty} \left(\frac{-1}{t^2+2} + \frac{1}{2} \right)$ $= \frac{1}{2} \left(0 + \frac{1}{2} \right) = \frac{1}{4}. \quad \text{Convergent}$
- 11. $\int_{-\infty}^{\infty} \frac{x \, dx}{1 + x^2} = \int_{-\infty}^{0} \frac{x \, dx}{1 + x^2} + \int_{0}^{\infty} \frac{x \, dx}{1 + x^2} \text{ and}$ $\int_{-\infty}^{0} \frac{x \, dx}{1 + x^2} = \lim_{t \to -\infty} \left[\frac{1}{2} \ln(1 + x^2) \right]_{t}^{0} = \lim_{t \to -\infty} \left[0 \frac{1}{2} \ln(1 + t^2) \right] = -\infty. \quad \text{Divergent}$
- 14. $\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx = \lim_{t \to \infty} \int_{1}^{\sqrt{t}} e^{-u} (2 du) \qquad \begin{bmatrix} u = \sqrt{x}, \\ du = dx/(2\sqrt{x}) \end{bmatrix}$ $= 2 \lim_{t \to \infty} \left[-e^{-u} \right]_{1}^{\sqrt{t}} = 2 \lim_{t \to \infty} \left(-e^{-\sqrt{t}} + e^{-1} \right) = 2(0 + e^{-1}) = 2e^{-1}. \qquad \text{Convergent}$
- 15. $\int_{2\pi}^{\infty} \sin \theta \, d\theta = \lim_{t \to \infty} \int_{2\pi}^{t} \sin \theta \, d\theta = \lim_{t \to \infty} \left[-\cos \theta \right]_{2\pi}^{t} = \lim_{t \to \infty} (-\cos t + 1)$. This limit does not exist, so the integral is divergent. Divergent
- 17. $\int_{1}^{\infty} \frac{x+1}{x^2+2x} \, dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\frac{1}{2}(2x+2)}{x^2+2x} \, dx = \frac{1}{2} \lim_{t \to \infty} \left[\ln(x^2+2x) \right]_{1}^{t} = \frac{1}{2} \lim_{t \to \infty} \left[\ln(t^2+2t) \ln 3 \right] = \infty.$ Divergent
- 25. $\int_{e}^{\infty} \frac{1}{x(\ln x)^3} dx = \lim_{t \to \infty} \int_{e}^{t} \frac{1}{x(\ln x)^3} dx = \lim_{t \to \infty} \int_{1}^{\ln t} u^{-3} du \quad \left[\begin{array}{c} u = \ln x, \\ du = dx/x \end{array} \right] = \lim_{t \to \infty} \left[-\frac{1}{2u^2} \right]_{1}^{\ln t}$ $= \lim_{t \to \infty} \left[-\frac{1}{2(\ln t)^2} + \frac{1}{2} \right] = 0 + \frac{1}{2} = \frac{1}{2}.$ Convergent
- $27. \int_0^1 \frac{3}{x^5} dx = \lim_{t \to 0^+} \int_t^1 3x^{-5} dx = \lim_{t \to 0^+} \left[-\frac{3}{4x^4} \right]_t^1 = -\frac{3}{4} \lim_{t \to 0^+} \left(1 \frac{1}{t^4} \right) = \infty. \qquad \text{Divergent}$

Solution 7.8-Winter 2008

- 49. For x > 0, $\frac{x}{x^3 + 1} < \frac{x}{x^3} = \frac{1}{x^2}$. $\int_1^{\infty} \frac{1}{x^2} dx$ is convergent by Equation 2 with p = 2 > 1, so $\int_1^{\infty} \frac{x}{x^3 + 1} dx$ is convergent by the Comparison Theorem. $\int_0^1 \frac{x}{x^3 + 1} dx$ is a constant, so $\int_0^{\infty} \frac{x}{x^3 + 1} dx = \int_0^1 \frac{x}{x^3 + 1} dx + \int_1^{\infty} \frac{x}{x^3 + 1} dx$ is also convergent.
- **50.** For $x \ge 1$, $\frac{2+e^{-x}}{x} > \frac{2}{x}$ [since $e^{-x} > 0$] $> \frac{1}{x}$. $\int_{1}^{\infty} \frac{1}{x} dx$ is divergent by Equation 2 with $p = 1 \le 1$, so $\int_{1}^{\infty} \frac{2+e^{-x}}{x} dx$ is divergent by the Comparison Theorem.
- 51. For x>1, $f(x)=\frac{x+1}{\sqrt{x^4-x}}>\frac{x+1}{\sqrt{x^4}}>\frac{x}{x^2}=\frac{1}{x}$, so $\int_2^\infty f(x)\,dx$ diverges by comparison with $\int_2^\infty \frac{1}{x}\,dx$, which diverges by Equation 2 with $p=1\leq 1$. Thus, $\int_1^\infty f(x)\,dx=\int_1^2 f(x)\,dx+\int_2^\infty f(x)\,dx$ also diverges.
- 57. If p = 1, then $\int_0^1 \frac{dx}{x^p} = \lim_{t \to 0^+} \int_t^1 \frac{dx}{x} = \lim_{t \to 0^+} [\ln x]_t^1 = \infty$. Divergent.

 If $p \neq 1$, then $\int_0^1 \frac{dx}{x^p} = \lim_{t \to 0^+} \int_t^1 \frac{dx}{x^p}$ [note that the integral is not improper if p < 0] $= \lim_{t \to 0^+} \left[\frac{x^{-p+1}}{-p+1} \right]_t^1 = \lim_{t \to 0^+} \frac{1}{1-p} \left[1 \frac{1}{t^{p-1}} \right]$

If p>1, then p-1>0, so $\frac{1}{t^{p-1}}\to\infty$ as $t\to0^+$, and the integral diverges.

If
$$p < 1$$
, then $p - 1 < 0$, so $\frac{1}{t^{p-1}} \to 0$ as $t \to 0^+$ and $\int_0^1 \frac{dx}{x^p} = \frac{1}{1-p} \left[\lim_{t \to 0^+} \left(1 - t^{1-p} \right) \right] = \frac{1}{1-p}$.

Thus, the integral converges if and only if p < 1, and in that case its value is $\frac{1}{1-n}$.