TQS 126 Spring 2008 Quinn
CALcuLus & ANALYTIC GEOMETRY 111
Week 3 HW—Taylor Series

These problems use the techniques of TN §5. Each problem can be derived from the basic series
given in Examples 4.2. Hand in your thoughtful, well-written, and reflective solution to
problem 10 on Thursday, April 17.

Directions

(a) Find the Taylor series for f(z) based at b. Your answer should have one Sigma ()_) sign.
On some problems you might want to describe the coefficients using a multi-part notation as in
Example 5.5.

(b) Then write the solution in expanded form: ag + a1(x — b) 4 as(z — b)? + . .. where you write at
least the first three non-zero terms explicitly.

(c) Then give an interval I where the Taylor series converges.

1. f(z) = cos(3z2) based at b = 0.
By substitution. Begin with the Taylor series for cos(x) at b = 0:
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Since the Taylor series for cos(x) converges on (—o0, 00), so will the one for cos(3z?).

2. f(x) = sin?(x) based at b = 0.

There are several approaches here. (Brute force calculation, multiplying two series for sine, or
using a trig identity). We will exploit the double angle formula sin® z = L;(M)

we find the series for cos(2x) by substitution.
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Since the Taylor series for cos(z) converges on (—oo, 00), so will this one.

. f(z) = €*75 based at b = 2.
To shift the Taylor series to be about b = 2, we let w = x — 2. Then
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Since the Taylor series for cos(z) converges on (—oo, 00), so will this one.

. f(z) = sin(x) based at b = /2.

Notice that cos(x — 7/2) = cosx cos7/2 + sinzsin7/2 = sinz. So
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Since the Taylor series for cos(z) converges on (—oo, 00), so will this one.
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This converges on the smallest interval, namely |z| < 2/3.
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6. f(x)= CEESNErEY based at b = 1.

First translate using u =2z — 1 :
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Now perform a partial fraction decomposition to find that
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Proceed as in the previous problem. The series will be
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The interval of convergence will be |u| < 2/3 so |[x — 1] < 2/3 or 1/3 <z < 5/3.

7. The “sinh” and “cosh” functions are used, for example, in electrical engineering, and are
defined by sinh(z) = (¥ — e™*)/2, and cosh(z) = (e* 4+ e~*)/2. Do questions (a) and (b)
above for the function h(z) = 2sinh(3x) — 4 cosh(3x) based at b = 0.
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Converges everywhere.
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8. f(x) = 52 —5)2G2 = 1) based at b = 0.
First you will want to use partial fractions to express f(z)
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Express each piece as a geometric series and add. You will get something like this
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It converges provided |3z| < 1 and |2z/5| < 1. So we must have |z| < 1/3.

9. f(z) =1In(1 + 2?) based at b = 0.
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converges when |z| < 1.
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Do this problem in two ways: (a) Find the series for 1/(1 + 22) then multiply it by 2z and
(b) Differentiate In(1 4 x2) and use problem (9). Your answer to (b) should agree with your
answer to (a).

based at b = 0.

You should get the same answer as above. Just by a different process. This was your
homework to write-up.

Find the fifth Taylor polynomial based at b = 0 for f(x) = e®sinz by multiplication of the
series for e” and sinz (you do not have to find the general term of the product).
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Since both the Taylor polynomials for e* and sinz converge everywhere, so will this product.



