Calculus \& Analytic Geometry III

Week 3 HW——Taylor Series

These problems use the techniques of TN §5. Each problem can be derived from the basic series given in Examples 4.2. Hand in your thoughtful, well-written, and reflective solution to problem 10 on Thursday, April 17.

Directions

(a) Find the Taylor series for $f(x)$ based at b. Your answer should have one Sigma (\sum) sign. On some problems you might want to describe the coefficients using a multi-part notation as in Example 5.5.
(b) Then write the solution in expanded form: $a_{0}+a_{1}(x-b)+a_{2}(x-b)^{2}+\ldots$ where you write at least the first three non-zero terms explicitly.
(c) Then give an interval I where the Taylor series converges.

1. $f(x)=\cos \left(3 x^{2}\right)$ based at $b=0$.

By substitution. Begin with the Taylor series for $\cos (x)$ at $b=0$:

$$
T(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

and evaluate for an input of $3 x^{2}$

$$
\begin{aligned}
\cos \left(3 x^{2}\right)=T\left(3 x^{2}\right) & =1-\frac{\left(3 x^{2}\right)^{2}}{2!}+\frac{\left(3 x^{2}\right)^{4}}{4!}-\frac{\left.3 x^{2}\right)^{6}}{6!}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(3 x^{2}\right)^{2 n}}{(2 n)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{4 n}}{(2 n)!}
\end{aligned}
$$

Since the Taylor series for $\cos (x)$ converges on $(-\infty, \infty)$, so will the one for $\cos \left(3 x^{2}\right)$.
2. $f(x)=\sin ^{2}(x)$ based at $b=0$.

There are several approaches here. (Brute force calculation, multiplying two series for sine, or using a trig identity). We will exploit the double angle formula $\sin ^{2} x=\frac{1-\cos (2 x)}{2}$. As above, we find the series for $\cos (2 x)$ by substitution.

$$
\begin{aligned}
\cos (2 x) & =1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\frac{2 x)^{6}}{6!}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} x^{2 n}}{(2 n)!}
\end{aligned}
$$

So

$$
\begin{aligned}
1-\cos (2 x) & =\frac{(2 x)^{2}}{2!}-\frac{(2 x)^{4}}{4!}+\frac{2 x)^{6}}{6!}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2 x)^{2 n}}{(2 n)!} \\
\text { and } \frac{1-\cos (2 x)}{2} & =\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2 x)^{2 n}}{(2 n)!} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{2 n-1} x^{2 n}}{(2 n)!}
\end{aligned}
$$

Since the Taylor series for $\cos (x)$ converges on $(-\infty, \infty)$, so will this one.
3. $f(x)=e^{4 x-5}$ based at $b=2$.

To shift the Taylor series to be about $b=2$, we let $u=x-2$. Then

$$
e^{4 x-5}=e^{4(u+2)-5}=e^{3} e^{4 u}=e^{3} \sum_{k=0}^{\infty} \frac{(4 u)^{k}}{k!}=\sum_{k=0}^{\infty} \frac{e^{3} 4^{k}}{k!}(x-2)^{k} .
$$

Since the Taylor series for $\cos (x)$ converges on $(-\infty, \infty)$, so will this one.
4. $f(x)=\sin (x)$ based at $b=\pi / 2$.

Notice that $\cos (x-\pi / 2)=\cos x \cos \pi / 2+\sin x \sin \pi / 2=\sin x$. So

$$
\sin (x)=\cos (x-\pi / 2)=1-\frac{(x-\pi / 2)^{2}}{2!}+\frac{(x-\pi / 2)^{4}}{4!}-\frac{(x-\pi / 2)^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-\pi / 2)^{2 n}}{(2 n)!}
$$

Since the Taylor series for $\cos (x)$ converges on $(-\infty, \infty)$, so will this one.
5. $f(x)=\frac{1}{4 x-5}-\frac{1}{3 x-2}$ based at $b=0$.

$$
\begin{aligned}
\frac{1}{4 x-5}=\frac{1}{-5\left(1-\frac{4}{5} x\right)}= & -\frac{1}{5}\left(1+\left(\frac{4}{5} x\right)+\left(\frac{4}{5} x\right)^{2}+\cdots+\left(\frac{4}{5} x\right)^{n}+\cdots\right) \text { converges for }|x|<5 / 4 \\
\frac{1}{3 x-2}=\frac{1}{-2\left(1-\frac{3}{2} x\right)}= & -\frac{1}{2}\left(1+\left(\frac{3}{2} x\right)+\left(\frac{3}{2} x\right)^{2}+\cdots+\left(\frac{3}{2} x\right)^{n}+\cdots\right) \text { converges for }|x|<2 / 3 \\
\text { So } \frac{1}{4 x-5}-\frac{1}{3 x-2}= & -\frac{1}{5}\left(1+\left(\frac{4}{5} x\right)+\left(\frac{4}{5} x\right)^{2}+\cdots+\left(\frac{4}{5} x\right)^{n}+\cdots\right) \\
& +\frac{1}{2}\left(1+\left(\frac{3}{2} x\right)+\left(\frac{3}{2} x\right)^{2}+\cdots+\left(\frac{3}{2} x\right)^{n}+\cdots\right) \\
= & \sum_{k=0}^{\infty}-\frac{1}{5}\left(\frac{4}{5}\right)^{k} x^{k}+\frac{1}{2}\left(\frac{3}{2}\right)^{k} x^{k} \\
= & \sum_{k=0}^{\infty}\left(-\frac{4^{k}}{5^{k+1}}+\frac{3^{k}}{2^{k+1}}\right) x^{k} .
\end{aligned}
$$

This converges on the smallest interval, namely $|x|<2 / 3$.
6. $f(x)=\frac{x}{(2 x+1)(3 x-1)}$ based at $b=1$.

First translate using $u=x-1$:

$$
f(x)=\frac{x}{(2 x+1)(3 x-1)}=\frac{u+1}{(2(u+1)+1)(3(u+1)-1)}=\frac{u+1}{(2 u+3)(3 u+2)} .
$$

Now perform a partial fraction decomposition to find that

$$
\frac{u+1}{(2 u+3)(3 u+2)}=\frac{1}{5(3+2 u)}+\frac{1}{5(2+3 u)}=\frac{1}{15\left(1+\frac{2}{3} u\right)}+\frac{1}{10\left(1+\frac{3}{2} u\right)} .
$$

Proceed as in the previous problem. The series will be
$\sum_{k=0}^{\infty} \frac{1}{15}\left(\frac{-2}{3} u\right)^{k}+\frac{1}{10}\left(\frac{-3}{2} u\right)^{k}=\sum_{k=0}^{\infty}\left[\frac{1}{15}\left(\frac{-2}{3}\right)^{k}+\frac{1}{10}\left(\frac{-3}{2}\right)^{k}\right](x-1)^{k}$
$=\frac{1}{6}-\frac{7(x-1)}{36}+\frac{55}{216}(x-1)^{2}-\frac{463(x-1)^{3}}{1296}+\frac{4039(x-1)^{4}}{7776}-\frac{35839(x-1)^{5}}{46656}+\frac{320503(x-1)^{6}}{279936}-\frac{2876335(x-1)^{7}}{1679616}+$ $\frac{25854247(x-1)^{8}}{10077696}-\frac{232557151(x-1)^{9}}{60466176}+\frac{2092490071(x-1)^{10}}{362797056}+\cdots$.
The interval of convergence will be $|u|<2 / 3$ so $|x-1|<2 / 3$ or $1 / 3<x<5 / 3$.
7. The "sinh" and "cosh" functions are used, for example, in electrical engineering, and are defined by $\sinh (x)=\left(e^{x}-e^{-x}\right) / 2$, and $\cosh (x)=\left(e^{x}+e^{-x}\right) / 2$. Do questions (a) and (b) above for the function $h(x)=2 \sinh (3 x)-4 \cosh (3 x)$ based at $b=0$.
$\sinh (x)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{2 n+1}}{(2 n+1)!}+\cdots$
$\cosh (x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{2 n}}{(2 n)!}+\cdots$
So $h(x)=2 \sinh (3 x)-4 \cosh (3 x)=-4+6 x-18 x^{2}+9 x^{3}-\frac{27 x^{4}}{2}+\frac{81 x^{5}}{20}-\frac{81 x^{6}}{20}+\frac{243 x^{7}}{280}-$ $\frac{729 x^{8}}{1120}+\cdots$.
Converges everywhere.
8. $f(x)=\frac{1}{(2 x-5)^{2}(3 x-1)}$ based at $b=0$.

First you will want to use partial fractions to express $f(x)$
$f(x)=\frac{1}{(2 x-5)^{2}(3 x-1)}=\frac{2}{13(-5+2 x)^{2}}-\frac{6}{169(-5+2 x)}+\frac{9}{169(-1+3 x)}$.
Express each piece as a geometric series and add. You will get something like this $f(x)=-\frac{1}{25}-\frac{19 x}{125}-\frac{297 x^{2}}{625}-\frac{4487 x^{3}}{3125}-\frac{13477 x^{4}}{3125}-\frac{1010967 x^{5}}{78125}-\frac{15164953 x^{6}}{390625}-\cdots$
It converges provided $|3 x|<1$ and $|2 x / 5|<1$. So we must have $|x|<1 / 3$.
9. $f(x)=\ln \left(1+x^{2}\right)$ based at $b=0$. $\ln \left(1+x^{2}\right)=x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\frac{x^{8}}{4}+\frac{x^{10}}{5}-\frac{x^{12}}{6}+\frac{x^{14}}{7}-\frac{x^{16}}{8}+\cdots$ converges when $|x|<1$.
10. $f(x)=\frac{2 x}{1+x^{2}}$ based at $b=0$.

Do this problem in two ways: (a) Find the series for $1 /\left(1+x^{2}\right)$ then multiply it by $2 x$ and (b) Differentiate $\ln \left(1+x^{2}\right)$ and use problem (9). Your answer to (b) should agree with your answer to (a).
You should get the same answer as above. Just by a different process. This was your homework to write-up.
11. Find the fifth Taylor polynomial based at $b=0$ for $f(x)=e^{x} \sin x$ by multiplication of the series for e^{x} and $\sin x$ (you do not have to find the general term of the product).
$f(x)=e^{x} \sin x=x+x^{2}+\frac{x^{3}}{3}-\frac{x^{5}}{30}-\frac{x^{6}}{90}-\frac{x^{7}}{630}+\frac{x^{9}}{22680}+\frac{x^{10}}{113400}+\cdots$
Since both the Taylor polynomials for e^{x} and $\sin x$ converge everywhere, so will this product.

