Calculus \& Analytic Geometry III

Week 3 HW—Taylor Series

These problems use the techniques of TN §5. Each problem can be derived from the basic series given in Examples 4.2. Hand in your thoughtful, well-written, and reflective solution to problem 10 on Thursday, April 17.

Directions

(a) Find the Taylor series for $f(x)$ based at b. Your answer should have one Sigma (\sum) sign. On some problems you might want to describe the coefficients using a multi-part notation as in Example 5.5.
(b) Then write the solution in expanded form: $a_{0}+a_{1}(x-b)+a_{2}(x-b)^{2}+\ldots$ where you write at least the first three non-zero terms explicitly.
(c) Then give an interval I where the Taylor series converges.

1. $f(x)=\cos \left(3 x^{2}\right)$ based at $b=0$.
2. $f(x)=\sin ^{2}(x)$ based at $b=0$.
3. $f(x)=e^{4 x-5}$ based at $b=2$.
4. $f(x)=\sin (x)$ based at $b=\pi / 2$.
5. $f(x)=\frac{1}{4 x-5}-\frac{1}{3 x-2}$ based at $b=0$.
6. $f(x)=\frac{x}{(2 x+1)(3 x-1)}$ based at $b=1$.
7. The "sinh" and "cosh" functions are used, for example, in electrical engineering, and are defined by $\sinh (x)=\left(e^{x}-e^{-x}\right) / 2$, and $\cosh (x)=\left(e^{x}+e^{-x}\right) / 2$. Do questions (a) and (b) above for the function $h(x)=2 \sinh (3 x)-4 \cosh (3 x)$ based at $b=0$.
8. $f(x)=\frac{1}{(2 x-5)^{2}(3 x-1)}$ based at $b=0$.
9. $f(x)=\ln \left(1+x^{2}\right)$ based at $b=0$.
10. $f(x)=\frac{2 x}{1+x^{2}}$ based at $b=0$.

Do this problem in two ways: (a) Find the series for $1 /\left(1+x^{2}\right)$ then multiply it by $2 x$ and (b) Differentiate $\ln \left(1+x^{2}\right)$ and use problem (9). Your answer to (b) should agree with your answer to (a).
11. Find the fifth Taylor polynomial based at $b=0$ for $f(x)=e^{x} \sin x$ by multiplication of the series for e^{x} and $\sin x$ (you do not have to find the general term of the product).

