TQS 126

Spring 2008

Quinn

CALCULUS & ANALYTIC GEOMETRY III

Week 3 HW—Taylor Series

These problems use the techniques of TN §5. Each problem can be derived from the basic series given in Examples 4.2. Hand in your thoughtful, well-written, and reflective solution to problem 10 on Thursday, April 17.

Directions

(a) Find the Taylor series for f(x) based at b. Your answer should have one Sigma (\sum) sign. On some problems you might want to describe the coefficients using a multi-part notation as in Example 5.5.

(b) Then write the solution in expanded form: $a_0 + a_1(x-b) + a_2(x-b)^2 + \ldots$ where you write at least the first three non-zero terms explicitly.

(c) Then give an interval I where the Taylor series converges.

1.
$$f(x) = \cos(3x^2)$$
 based at $b = 0$.

2.
$$f(x) = \sin^2(x)$$
 based at $b = 0$.

3.
$$f(x) = e^{4x-5}$$
 based at $b = 2$.

4.
$$f(x) = \sin(x)$$
 based at $b = \pi/2$.

5.
$$f(x) = \frac{1}{4x-5} - \frac{1}{3x-2}$$
 based at $b = 0$.

6.
$$f(x) = \frac{x}{(2x+1)(3x-1)}$$
 based at $b = 1$.

7. The "sinh" and "cosh" functions are used, for example, in electrical engineering, and are defined by $\sinh(x) = (e^x - e^{-x})/2$, and $\cosh(x) = (e^x + e^{-x})/2$. Do questions (a) and (b) above for the function $h(x) = 2\sinh(3x) - 4\cosh(3x)$ based at b = 0.

8.
$$f(x) = \frac{1}{(2x-5)^2(3x-1)}$$
 based at $b = 0$.

9. $f(x) = \ln(1 + x^2)$ based at b = 0.

10.
$$f(x) = \frac{2x}{1+x^2}$$
 based at $b = 0$.

Do this problem in two ways: (a) Find the series for $1/(1 + x^2)$ then multiply it by 2x and (b) Differentiate $\ln(1 + x^2)$ and use problem (9). Your answer to (b) should agree with your answer to (a).

11. Find the fifth Taylor polynomial based at b = 0 for $f(x) = e^x \sin x$ by multiplication of the series for e^x and $\sin x$ (you do not have to find the general term of the product).