Autumn 2008

Horak

Calculus & Analytic Geometry III

§13.1 Vector Functions

Definition. If x, y, and z are given as continuous functions

 $x = f(t) \qquad \qquad y = g(t) \qquad \qquad z = h(t)$

over an interval of t-values, then the set of points (x, y, z) = (f(t), g(t), h(t)) defined by these equation is a *parametric curve* (sometimes called a *space curve*). The equations are *parametric equations* for the curve.

Examples.

x	=	$2\cos t$		x	=	5+t	
y	=	$3\sin t$	$0 \le t \le \pi$	y	=	1 + 4t	$0 \le t \le 1$
		t J		z	=	3 - 2t	

An oval helix

The line in 3-D $\mathbf{r}(t) = (5+t)\mathbf{i} + (1+4t)\mathbf{j} + (3-2t)\mathbf{k}$ from §12.5

The vector function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ is the position vector of the point P(f(t), g(t), h(t)) on the space curve C. The tip of the moving vector \mathbf{r} traces out the space curve—provided everything is continuous.

Questions.

1. Do vector functions make sense with our original definition of function as a rule that assigns one output for each input?

2. What should the domain of a vector function be?

State the natural domains for: $\mathbf{r}(t) = \langle t^2, t^3, \sqrt{t} \rangle$ $\mathbf{r}(t) = \langle \sin^{-1}(t), \ln(t), 1 \rangle$

3. What should it mean for a vector function to have a limit at a point a?

Find the limits:

$$\lim_{t \to 0} \langle t^2, t^3, \frac{\sin t}{t} \rangle \qquad \qquad \lim_{t \to 0^+} \langle \sin^{-1}(t), \ln(t), 1 \rangle$$

4. What should it mean for a vector function to be continuous at a point a?

5. Can you see that we are leading to asking calculus questions about vector functions?

TQS 126

Autumn 2008

Horak

Calculus & Analytic Geometry III

$\S13.2$ Derivatives and Integrals of Vector Functions

Describe the graphs for $0 \le t \le 2\pi$ if $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + \sin 5t \mathbf{k}$

What should $\mathbf{r}'(t)$ be?

Does this make sense based on the definition of derivative? $\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} =$

 $\mathbf{r}'(t)$ is the *tangent vector* to the curve at the point We occasionally want the *unit tangent vector* T(t) = **Example.** Find the tangent vector, unit tangent vector, and equation of the line tangent to $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + \sin 5t \mathbf{k}$ when $t = \pi/2$.

Differentiation Rules are *mostly* what you would expect—with only a few surprises.

3 Suppose **u** and **v** are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

1.
$$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] =$$
2.
$$\frac{d}{dt}[c\mathbf{u}(t)] =$$
3.
$$\frac{d}{dt}[f(t)\mathbf{u}(t)] =$$
4.
$$\frac{d}{dt}[\mathbf{u}(t) \cdot \mathbf{v}(t)] =$$
5.
$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] =$$
6.
$$\frac{d}{dt}[\mathbf{u}(f(t))] = \mathbf{u}'(f(t))f'(t) \text{ (chain rule)}$$

Book proves 4. Let's verify 3 and 5 for a particular example. Let $f(t) = \frac{1}{t}$, $\mathbf{u}(t) = \langle t, t^2, t^3 \rangle$ and $\mathbf{v}(t) = \langle e^{2t}, e^{-2t}, te^t \rangle$.

Any ideas on how we might prove these things?

Of course, wherever we have derivatives...

$$\int_{a}^{b} \mathbf{r}(t)dt = \left(\int_{a}^{b} f(t)dt\right)\mathbf{i} + \left(\int_{a}^{b} g(t)dt\right)\mathbf{j} + \left(\int_{a}^{b} h(t)dt\right)\mathbf{k}$$

Problems. Find the requested integral of the vector function.

1. Let
$$\mathbf{r}_1(t) = \frac{t}{1+t^2}\mathbf{i} + \frac{1}{1+t^2}\mathbf{j} + \frac{1}{1-t^2}\mathbf{k}$$
. Find $\int \mathbf{r}_1(t)dt$
2. Let $\mathbf{r}_2(t) = \sec 2t\mathbf{i} + \tan 3t\mathbf{j} + \ln(1-t)\mathbf{k}$. Find $\int \mathbf{r}_2(t)dt$
3. Let $\mathbf{r}_3(t) = \langle \sin(t), \sin(t)\cos(t), \sin^2(t) \rangle$. Find $\int_0^{\pi} \mathbf{r}_3(t)dt$.

Can you formulate a FTC II for vector functions?