Beyond Linear Approximations-Looking for a Higher Degree

Warm-up. Find $T_{1}(x)$ (the first Taylor Polynomial) approximating $f(x)=\tan x$ at $b=\pi / 4$.

How accurate is $T_{1}(x)$ on $[\pi / 6, \pi / 3]$?

Find and interval J containing $\pi / 4$ such that the error is at most 0.001 on J.

Approximations: the naive approach Let's improve our approximation function by fitting a quadratic (rather than linear function) at a specified point $x=b$. We will want the values of the functions, first derivatives, and second derivatives to match at b.

Illustration. A quadratic approximation, $P_{2}(x)$, to $g(x)=\cos x$ near 0 takes the general form $P_{2}(x)=C_{0}+C_{1} x+C_{2} x^{2}$. Find constants C_{0}, C_{1}, and C_{2} by requiring $g(0)=P_{2}(0), g^{\prime}(0)=P_{2}^{\prime}(0)$, and $g^{\prime \prime}(0)=P_{2}^{\prime \prime}(0)$,

$$
P_{2}(x)=1+0 \cdot x-\frac{1}{2} x^{2} .
$$

Generalized details. Using the same idea, find the coefficients of the quadratic approximation $P_{2}(x)=C_{0}+C_{1} x+C_{2} x^{2}$ to a nice function $f(x)$ near 0 .

Question What about higher-degree polynomials? (Still near 0).

For a nice function $f(x)$, the nth Taylor approximation at $x=0$ is

$$
T_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}
$$

Examples. Find $T_{n}(x)$ for the following functions for x near 0 .
$f(x)=\frac{1}{1-x}$

$$
g(x)=e^{x}
$$

$$
h(x)=\cos x
$$

$$
\begin{aligned}
& T_{n}(x)=1+x+x^{2}+x^{3}+\cdots+x^{n} \\
& T_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \\
& T_{n}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{m} x^{2 m} 2 m!\text { where } \\
& m=\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

Question. What about approximations near some point other than 0 ?
Set up the Taylor polynomial at $x=b$ at $f(b)$ plus error terms which are zero at $x=b$. Write polynomial as powers of $(x-b)$ rather than powers of x.

$$
f(x) \approx T_{n}(x)=C_{0}+C_{1}(x-b)+C_{2}(x-b)^{2}+\cdots+C_{n}(x-b)^{n} .
$$

Example. Find the coefficients of $T_{3}(x)$ (the third Taylor Polynomial) approximating $f(x)=\tan x$ at $b=\pi / 4$.

$$
T_{3}(x)=C_{0}+C_{1}(x-\pi / 4)+C_{2}(x-\pi / 4)^{2}+C_{3}(x-\pi / 4)^{3}
$$

$$
\text { Ans: } T_{3}(x)=1+2(x-\pi / 4)+2(x-\pi / 4)^{2}+\frac{8}{3}(x-\pi / 4)^{3} .
$$

For a nice function $f(x)$, the nth Taylor approximation at $x=b$ is
$T_{n}(x)=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime \prime}(b)}{2!}(x-b)^{2}+\frac{f^{\prime \prime \prime}(b)}{3!}(x-b)^{3}+\frac{f^{(4)}(b)}{4!}(x-b)^{4}+\cdots+\frac{f^{(n)}(0)}{n!}(x-b)^{n}$.

What's the collateral damage? (Or can we determine the error in the nth Taylor polynomial?)
Start from error in $T_{1}(x)$:

$$
f(x)-\underbrace{\left(f(b)+f^{\prime}(b)(x-b)\right)}_{T_{1}(x)}=\int_{b}^{x} f^{\prime \prime}(t)(x-t) d t \quad \text { (Use integration by parts again...) }
$$

Quadratic Approximation Error Bound. If $\left|f^{\prime \prime \prime}(t)\right|<M$ for all t between x and b then

$$
\mid \text { error }|=|f(x)-\underbrace{\left[f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime \prime}(b)}{2}(x-b)^{2}\right]}_{T_{2}(x)}| \leq \frac{M}{3!}| x-\left.b\right|^{3} .
$$

Continuing the process of expressing the exact error as an integral,

$$
\left|f(x)-T_{n}(x)\right|=\left|\frac{1}{n!} \int_{b}^{x} f^{(n+1)}(x)(x-t)^{n} d t\right|,
$$

breaking it down by parts, regrouping, and approximating leads to the following theorem:
Taylor's Inequality. Suppose I is an interval containing b. If $\left|f^{(n+1)}(t)\right|<M$ for all t in I then

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{n+1}
$$

