Calculus \& Analytic Geometry III

Three-Dimensions: The Preliminaries

Warm-up. Given a $\ell \times w \times h$ rectangular box, what is the length it's diagonal?

Question. How much information do we need to describe a point in 1-dimension? 2-dimensions? 3-dimensions?
coordinate axes
coordinate planes
octants
right-hand rule
$P(x, y, z)$ in three-dimensional rectangular coordinate system (sometimes called Cartesian coordinates).

Distance Formula in Three Dimensions. The distance between points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} .
$$

Problems. Find the distance between $P(3,7,-5)$ and

1. $Q(1,-2,4)$
2. the x-axis
3. the $y z$-plane

Find the equation of a sphere centered at P with a radius of 2 .

In general, the equation of a sphere with center $C(h, k, l)$ and radius r is

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2} .
$$

Find the radius and center of $4 x^{2}+4 y^{2}+4 z^{2}-8 x+16 y=1$.

Definition. A vector is a quantity that has a magnitude and a direction. A scalar is only a magnitude. (Compare velocity vs. speed)

Scalar Multiplication

Vector Components. If a particle moves from point $A\left(a_{1}, a_{2}, a_{3}\right)$ (the initial point) to $B\left(b_{1}, b_{2}, b_{3}\right)$ (the terminal point), it's displacement vector is

$$
\overrightarrow{A B}=\left\langle b_{1}-a_{1}, b_{2}-a_{2}, b_{3}-a_{3}\right\rangle .
$$

Example. What is the displacement vector $\mathbf{v}=\overrightarrow{A B}$ from $A(3,1,4)$ to $B(2,7,1)$? What is it's magnitude?

Clarification. We have similar but different notation:

$$
(1,2,3) \quad \text { and }
$$

Problems. Suppose $\mathbf{a}=\langle 1,2,-3\rangle$ and $\mathbf{b}=\langle-2,-1,5\rangle$. Find

1. $\mathbf{a}+\mathrm{b}$
2. $2 \mathbf{a}-\mathbf{b}$
3. $|\mathbf{a}|$
4. $|\mathbf{a}-\mathbf{b}|$

Properties of Vectors. (page 774) vector addition is commutative and associative, scalar multiplication distributes (sum of scalar distributes across a vector, sum of vectors distributes across a scalar product)

Special Vectors. unit vectors, standard basis vectors
unit vector
$\mathbf{i}=$
$\mathbf{j}=$
$\mathbf{k}=$
So $\mathbf{b}=\langle-2,-1,5\rangle=$ \qquad i+ \qquad j+ \qquad k.

Motivating Question. Can we take the product of two vectors? What would it mean?

Dot product (scalar) and cross product (vector).
Definition. If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the dot product is a number $\mathbf{a} \cdot \mathbf{b}$ given by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} .
$$

Find $\mathbf{a} \cdot \mathbf{b}$ if

$$
\mathbf{a}=\langle 4,1,1 / 4\rangle \text { and } \mathbf{b}=\langle 6,-3,-8\rangle \quad \mathbf{a}=4 \mathbf{i}+9 \mathbf{k} \text { and } \mathbf{b}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}
$$

\mathbf{a} is a unit vector at angle α and \mathbf{b} is a unit vector at angle β.

Given any vector a, what is a unit vector in the same direction?

6 Corollary If θ is the angle between the nonzero vectors \mathbf{a} and \mathbf{b}, then

$$
\cos \theta=\frac{\mathbf{a}}{|\mathbf{a}|} \cdot \frac{\mathbf{b}}{|\mathbf{b}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} .
$$

The text uses the law of cosines to prove Theorem $\sqrt[3]{ }$ and then Corollary 6 . You might want to check it out (p. 780).

Problem. Find the three angles of the triangle with vertices $P(1,-3,-2), Q(2,0,-4)$, and $R(2,2,-3)$.

How do you know when two vectors are perpendicular? How do you know when two vectors are parallel?

Parallel? Perpendicular? or Neither?
$\langle-3,9,6\rangle$ and $\langle 4,-12,-8\rangle$
$\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $2 \mathbf{i}-\mathbf{j}+\mathbf{k}$
$\langle a, b, c\rangle$ and $\langle-b, a, 0\rangle$

How can we resolve a vector into component parts?
scalar projection of \mathbf{b} onto $\mathbf{a}: \operatorname{comp}_{\mathbf{a}} \mathbf{b}$

vector projection of \mathbf{b} onto $\mathbf{a}: \operatorname{proj}_{\mathbf{a}} \mathbf{b}$

Find the scalar and vector projection of \mathbf{b} onto \mathbf{a} for $\mathbf{a}=\langle-3,9,6\rangle$ and $\mathbf{b}=\langle 4,-12,-8\rangle$
$\mathbf{a}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$

Lots of applications in Mechanics!
A 10 gram block sits perfectly still when placed on a ramp with a 30° incline. What force is friction overcoming to keep the block from moving down the ramp? (Said in another way, what is the projection of the force due to gravity onto a vector in the direction of the ramp?

