Vector Products
 Scalar:Vector::Dot:Cross

Recall the dot product of two vectors $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$
$\mathbf{a} \cdot \mathbf{b}=$

Problem. Find one of the three angles of the triangle with vertices $P(1,-3,-2), Q(2,0,-4)$, and $R(2,2,-3)$.

Are the following vectors parallel? perpendicular? or neither?
$\langle-3,9,6\rangle$ and $\langle 4,-12,-8\rangle \quad \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $2 \mathbf{i}-\mathbf{j}+\mathbf{k} \quad\langle a, b, c\rangle$ and $\langle-b, a, 0\rangle$

How can we resolve a vector into component parts?
scalar projection of \mathbf{b} onto \mathbf{a} : $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$

vector projection of \mathbf{b} onto $\mathbf{a}: \operatorname{proj}_{\mathbf{a}} \mathbf{b}$

Find the scalar and vector projection of \mathbf{b} onto \mathbf{a} for $\mathbf{a}=\langle-3,9,6\rangle$ and $\mathbf{b}=\langle 4,-12,-8\rangle$

$$
\mathbf{a}=\mathbf{i}-\mathbf{j}+2 \mathbf{k} \text { and } \mathbf{b}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}
$$

Lots of applications in Mechanics!

A 10 gram block sits perfectly still when placed on a ramp with a 30° incline. What force is friction overcoming to keep the block from moving down the ramp? (Said in another way, what is the projection of the force due to gravity onto a vector in the direction of the ramp?

The cross product of two vectors results in a vector. Only defined for vectors in 3 -space.
Geometric Definition If \mathbf{a} and \mathbf{b} are not parallel, the cross product $\mathbf{a} \times \mathbf{b}$ is a vector use length equals the area of the parallelogram with edges \mathbf{a} and \mathbf{b} times a unit vector perpendicular to both \mathbf{a} and \mathbf{b} given by the right hand rule.

Algebraic Definition For $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$
$\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}$.

Investigation. Find $\mathbf{i} \times \mathbf{k}$ geometrically and algebraically. Then find $\mathbf{k} \times \mathbf{i}$.

Cross product is not commutative!!! $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$.
Mnemonic for Cross Product. Use "determinant"
$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$.
Problems

1. Find $\langle 1,-1,-1\rangle \times\left\langle\frac{1}{2}, 1, \frac{1}{2}\right\rangle$ and verify that it is orthogonal to both of the given vectors.
2. Find a unit vector orthogonal to both $\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $2 \mathbf{i}+\mathbf{k}$.
3. Find the area of the triangle $P Q R$ if $P(0,-2,0), Q(4,1,-2)$, and $R(5,3,1)$.
4. Find the volume of the parallelepiped determined by the vectors $\mathbf{i}+\mathbf{j}-\mathbf{k}, \mathbf{i}-\mathbf{j}+\mathbf{k}$, and $-\mathbf{i}+\mathbf{j}+\mathbf{k}$

8 Theorem (Properties of cross products)

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $(c \mathbf{a}) \times \mathbf{b}=c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b})$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
5. $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
6. $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

TQS 126
Spring 2008
Quinn
Calculus \& Analytic Geometry III

Linear Equations

Linear Equations in 2-dimensions. Lines. Constant rate of change.
Algebraic version $y=y_{0}+m\left(x-x_{0}\right)$ where m is the slope and $\left(x_{0}, y_{0}\right)$ is a point on the line.

Vector version (parametric, input t)

$$
\begin{gathered}
\langle x(t), y(t)\rangle=\left\langle x_{0}, y_{0}\right\rangle+t \mathbf{v} \\
\left(\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}\right)
\end{gathered}
$$

where \mathbf{v} gives the direction of the line and $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}\right\rangle$ is a vector from the origin to a point $P\left(x_{0}, y_{0}\right)$ on the line.

Example. Consider the line $y=4 x-2$.

Lines in 3-dimensions.

Vector version (parametric, input t)

$$
\begin{gathered}
\langle x(t), y(t), z(t)\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t \mathbf{v} \\
\left(\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}\right)
\end{gathered}
$$

where \mathbf{v} gives the direction of the line and $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ is a vector from the origin to a point $P\left(x_{0}, y_{0}, z_{0}\right)$ on the line.

Example. Find the equation of the line that passes through the points $P(1,2,-1)$ and $Q(2,2,3)$.

Linear Equations in 3-dimensions. Planes. Constant rates of change along any direction in the surface.

Algebraic version $z=z_{0}+m_{x}\left(x-x_{0}\right)+m_{y}\left(y-y_{0}\right)$ where m_{x} is the rate of change in the x-direction, m_{y} is the rate of change in the y-directions, and $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane.

Vector version Given a direction vector perpendicular to the plane \mathbf{n} (called the normal vector and a point of the plane $\left(x_{0}, y_{0}, z_{0}\right)$

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=
$$

Example 1. Find the equation of the plane perpendicular to $3 \mathbf{i}+-1 \mathbf{j}+2 \mathbf{k}$ containing the point $P(1,1,2)$.

Example 2. Find the equation of the plane containing points $P(1,2,-1), Q(2,2,3)$, and $R(3,4,-1)$.

Observation. The general form of a plane in 3 -space is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \quad \text { or } \quad a x+b y+c z=d .
$$

In either case the normal vector is $\mathbf{n}=$

Now you are ready to answer all kinds of questions about points, planes, distances, and more in 3-D.

1. Sketch the plane $3 x+y+2 z=6$.
2. Where does the line $x=y-1=2 z$ intersect the plane $4 x-y+3 z=8$?
3. Find the line of intersection and the angle between the planes $3 x-2 y+z-1$ and $2 x+y-3 z=3$.
4. Find the distance from the origin to the plane $3 x+y+2 z=6$.
5. Find the distance between the planes $2 x-y+z=1$ and $6 x-3 y+3 z=1$
