Calculus \& Analytic Geometry III

Quadratic Equations in 3-D

A quadric surface is the graph of a second-degree equation in three variable x, y, and z.

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0
$$

where A, B, \ldots, J are constants (and at least one of A, B, or C is not zero).
We have already seen the equation of a sphere...

What happens when one of the variables is missing?
$x^{2}+z^{2}=4$
$x-y^{2}=1$
$\frac{y^{2}}{4}+\frac{z^{2}}{9}=1$

Quick Review of Conics Sections from $\S 10.5$:
1 The equation of a parabola with focus $(0, p)$ and directrix $y=-p$ is

$$
x^{2}=4 p y
$$

The equation of a parabola with focus $(p, 0)$ and directrix $x=-p$ is

$$
y^{2}=4 p x
$$

4 The ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad a \geq b>0
$$

has foci $\left(\pm\left(a^{2}-b^{2}\right), 0\right)$ and vertices $(\pm a, 0),(\pm b, 0)$.

7 The hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \quad a \geq b>0
$$

has foci $\left(\pm\left(a^{2}+b^{2}\right), 0\right)$ and vertices $(\pm a, 0)$ and asymptotes $y=$ $\pm(b / a) x$.

Extension to Three-Dimensions

1. $9 x^{2}+36 y^{2}+4 z^{2}=36$
2. $4 x^{2}+9 y^{2}-4 z^{2}=0$
3. $36 x^{2}+9 y^{2}-4 z^{2}=36$
4. $4 x^{2}-9 y^{2}-4 z^{2}=36$
5. $9 x^{2}+4 y^{2}-6 z=0$
6. $9 x^{2}-4 y^{2}-6 z=0$
7. $4 x^{2}+y^{2}+4 z^{2}-4 y-4 z+36=0$
