Calculus \& Analytic Geometry III

Quadratic Equations in 3-D

Match each function to its graph

1. $9 x^{2}+36 y^{2}+4 z^{2}=36$
2. $4 x^{2}+9 y^{2}-4 z^{2}=0$
3. $36 x^{2}+9 y^{2}-4 z^{2}=36$
4. $4 x^{2}-9 y^{2}-4 z^{2}=36$
5. $9 x^{2}+4 y^{2}-6 z=0$
6. $9 x^{2}-4 y^{2}-6 z=0$
7. $4 x^{2}+y^{2}+4 z^{2}-4 y-4 z+36=0$
8. $4 x^{2}+y^{2}+4 z^{2}-4 y-4 z-36=0$

Calculus \& Analytic Geometry III

Parametric Equations (§10.1) and Vector Functions (§13.1)

Definition. If x and y are given as continuous function

$$
x=f(t) \quad y=g(t)
$$

over an interval of t-values, then the set of points $(x, y)=(f(t), g(t))$ defined by these equation is a parametric curve (sometimes called aplane curve). The equations are parametric equations for the curve.

Often we think of parametric curves as describing the movement of a particle in a plane over time.

Examples.

$$
\left.\left.\begin{array}{l}
x=2 \cos t \\
y=3 \sin t
\end{array}\right\} \quad 0 \leq t \leq \pi \quad \begin{array}{l}
x=e^{t} \\
y=\ln t
\end{array}\right\} \quad 1 \leq t \leq e
$$

Can we find parameterizations of known curves?
the line segment
from $(1,3)$ to $(5,1)$
circle $x^{2}+y^{2}=1$

Why restrict ourselves to only moving through planes? Why not space? And why not use our nifty vector notation?

Definition. If x, y, and z are given as continuous functions

$$
x=f(t) \quad y=g(t) \quad z=h(t)
$$

over an interval of t-values, then the set of points $(x, y, z)=(f(t), g(t), h(t))$ defined by these equation is a parametric curve (sometimes called a space curve). The equations are parametric equations for the curve.

Examples.

$\left.\begin{array}{l}x=2 \cos t \\ y=3 \sin t \\ z=t\end{array}\right\} \quad 0 \leq t \leq \pi$
$\left.\begin{array}{l}x=5+t \\ y=1+4 t \\ z=3-2 t\end{array}\right\} \quad 0 \leq t \leq 1$

An oval helix
The line in 3-D

$$
\begin{aligned}
& \mathbf{r}(t)=(5+t) \mathbf{i}+(1+4 t) \mathbf{j}+(3-2 t) \mathbf{k} \\
& \text { from } \S 12.5
\end{aligned}
$$

The vector function $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$ is the position vector of the point $P(f(t), g(t), h(t))$ on the space curve C. The tip of the moving vector \mathbf{r} traces out the space curve - provided everything is continuous.

Questions.

1. Do vector functions make sense with our original definition of function as a rule that assigns one output for each input?
2. What should the domain of a vector function be?

State the natural domains for:
$\mathbf{r}(t)=\left\langle t^{2}, t^{3}, \sqrt{t}\right\rangle$

$$
\mathbf{r}(t)=\left\langle\sin ^{-1}(t), \ln (t), 1\right\rangle
$$

3. What should it mean for a vector function to have a limit at a point a ?

Find the limits:

$$
\lim _{t \rightarrow 0}\left\langle t^{2}, t^{3}, \frac{\sin t}{t}\right\rangle
$$

$$
\lim _{t \rightarrow 0^{+}}\left\langle\sin ^{-1}(t), \ln (t), 1\right\rangle
$$

4. What should it mean for a vector function to be continuous at a point a ?
5. Can you see that we are leading to asking calculus questions about vector functions?

Describe the graphs for

$$
\mathbf{r}(t)=\langle\cos (4 t), t, \sin 4 t\rangle \quad \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+\sin 5 t \mathbf{k}
$$

