Calculus \& Analytic Geometry III

Calculus on parametric equations in 2- and 3-dimensions

Warm-up. Describe the graphs for $0 \leq t \leq 2 \pi$:
$\mathbf{r}(t)=\langle\cos 4 t, t, \sin 4 t\rangle \quad \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+\sin 5 t \mathbf{k}$

Calculus on Plane Curves (§10.2) will depend heavily on the chain rule in Leibnitz notation.
If y is a function of x
x is a function is t
then y is a function of t implicitly.

$$
\frac{d y}{d t}=
$$

For parametric equations
y is a function of t
x is a function is t
so y is a function of x implicitly.

$$
\frac{d y}{d x}=
$$

Check your knowledge. Find the slope of the tangent line to the (plane) curve:

$$
y=\sqrt{1-x^{2}}
$$

$$
\left.\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array}\right\} 0 \leq t \leq \pi
$$

Examples. Use graphing strategies from $\S 4.3$ and $\S 4.5$ to determine the general shape of the plane curves:

$$
\left.\left.\begin{array}{l}
x=t+\ln t \\
y=t-\ln t
\end{array}\right\} t>0 \quad \begin{array}{l}
x=t-\sin t \\
y=1-\cos t
\end{array}\right\} 0 \leq t \leq 4 \pi
$$

$$
\text { Note: } \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

In the last three examples we could have chosen to present some of the derivatives in vector form.

$$
\begin{array}{lll}
\mathbf{r}(t)=\langle\cos t, \sin t\rangle & \mathbf{r}(t)=\langle t+\ln t, t-\ln t\rangle & \mathbf{r}(t)=\langle t-\sin t, 1-\cos t\rangle \\
\mathbf{r}^{\prime}(t)=\langle-\sin t, \cos t\rangle & \mathbf{r}^{\prime}(t)=\left\langle 1+\frac{1}{t}, 1-\frac{1}{t}\right\rangle & \mathbf{r}^{\prime}(t)=\langle 1-\cos t, \sin t\rangle
\end{array}
$$

This idea naturally extends to vector functions in three dimensions. If

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+\sin 5 t \mathbf{k}, \text { what should } \mathbf{r}^{\prime}(t) \text { be? }
$$

Does this make sense based on the definition of derivative?

$$
\frac{d \mathbf{r}}{d t}=\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}=
$$

$\mathbf{r}^{\prime}(t)$ is the tangent vector to the curve at the point
We occasionally want the unit tangent vector $T(t)=$

Example. Find the tangent vector, unit tangent vector, and equation of the line tangent to $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+\sin 5 t \mathbf{k}$ when $t=\pi / 2$.

Differentiation Rules are mostly what you would expect-with only a few surprises.
3 Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

1. $\frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=$
2. $\frac{d}{d t}[c \mathbf{u}(t)]=$
3. $\frac{d}{d t}[f(t) \mathbf{u}(t)]=$
4. $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=$
5. $\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=$
6. $\frac{d}{d t}[\mathbf{u}(f(t))]=\mathbf{u}^{\prime}(f(t)) f^{\prime}(t)$ (chain rule)

Book proves 4. Let's verify 3 and 5 for a particular example. Let $f(t)=\frac{1}{t}, \mathbf{u}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{v}(t)=\left\langle e^{2 t}, e^{-2 t}, t e^{t}\right\rangle$.

Any ideas on how we might prove these things?

Of course, wherever we have derivatives...

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} f(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} g(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} h(t) d t\right) \mathbf{k}
$$

Problems. Find the requested integral of the vector function.

1. Let $\mathbf{r}_{1}(t)=\frac{t}{1+t^{2}} \mathbf{i}+\frac{1}{1+t^{2}} \mathbf{j}+\frac{1}{1-t^{2}} \mathbf{k}$. Find $\int \mathbf{r}_{1}(t) d t$
2. Let $\mathbf{r}_{2}(t)=\sec 2 t \mathbf{i}+\tan 3 t \mathbf{j}+\ln (1-t) \mathbf{k}$. Find $\int \mathbf{r}_{2}(t) d t$
3. Let $\mathbf{r}_{3}(t)=\left\langle\sin (t), \sin (t) \cos (t), \sin ^{2}(t)\right\rangle$. Find $\int_{0}^{\pi} \mathbf{r}_{3}(t) d t$.

Can you formulate a FTC II for vector functions?

