Calculus \& Analytic Geometry III

Motion in Space: Velocity and Acceleration

Warm-up. If the position of an object is given by $s(t)=\cos (\pi t / 4)$ for $0 \leq t \leq 10$. Find its velocity, speed, and acceleration at time t.

Moving through space works the same way except position, velocity, and acceleration become vector quantities.

Motion in a plane	
$s(t)$ is position	
$\mathbf{s ^ { \prime } (t)}=v(t)$ is velocity through space	
$s^{\prime \prime}(t)=v^{\prime}(t)=a(t)$ is acceleration	
$\mathbf{r}^{\prime}(t)=\mathbf{v}(t)$ is velocity	
$\mathbf{r}^{\prime \prime}(t)=\mathbf{v}^{\prime}(t)=\mathbf{a}(t)$ is acceleration	

Example Find the velocity, speed and acceleration of a particle with the given position function.
$\mathbf{r}_{1}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 \mathbf{k}$
$\mathbf{r}_{2}(t)=t \sin t \mathbf{i}+t \cos t \mathbf{j}+t^{2} \mathbf{k}$

Of course, we can use integrals of vector functions to work backwards and find a position vector given information about velocity (or acceleration.)

Problem. Find the velocity and position vectors for a particle with acceleration $\mathbf{a}(t)=2 \mathbf{i}+6 t \mathbf{j}+$ $12 t^{2} \mathbf{k}$ provided $\mathbf{v}(0)=\mathbf{i}$ and $\mathbf{r}(0)=\mathbf{j}-\mathbf{k}$.

All of mechanics can be filtered through the lens of vector functions. $\mathbf{F}(t)=m \mathbf{a}(t)$.

Problems.

1. What force is required so that a particle of mass m has the position function $\mathbf{r}(t)=t^{3} \mathbf{i}+$ $t^{2} \mathbf{j}+t^{3} \mathbf{k}$?
2. A force with magnitude 20 N acts directly upward from the $x y$-plane on an object with mass 4 kg . The object starts at the origin with initial velocity $\mathbf{v}(0)=\mathbf{i}-\mathbf{j}$. Find its position function and its speed at time A projectile is fired with an initial speed of $500 \mathrm{~m} / \mathrm{s}$ and angle of elevation 30°. Find (a) the range of the projectile, (b) the maximum height reached, and (c) the speed at impact.

Sometimes it is useful to resolve the acceleration vector into two components

- one in the direction of motion (i.e. in the direction of the tangent vector)
- one in the direction of the normal.

Recall that $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=$
So $\mathbf{v}=$
Now differentiate with respect to t.

This leads to

$$
\mathbf{a}=v^{\prime} \mathbf{T}+\kappa v^{2} \mathbf{N} .
$$

Example. Find the tangential and normal components of the acceleration vector $\mathbf{r}(t)=e^{t} \mathbf{i}+\sqrt{2} t \mathbf{j}+e^{-t} \mathbf{k}$.

