Spring 2008

Calculus & Analytic Geometry III

Motion in Space: Velocity and Acceleration

Warm-up. If the position of an object is given by $s(t) = \cos(\pi t/4)$ for $0 \le t \le 10$. Find its velocity, speed, and acceleration at time t.

Moving through space works the same way except position, velocity, and acceleration become vector quantities.

Motion in a plane	Motion through space
s(t) is position	$\mathbf{r}(t)$ is position
s'(t) = v(t) is velocity	$\mathbf{r}'(t) = \mathbf{v}(t)$ is velocity
s''(t) = v'(t) = a(t) is acceleration	$\mathbf{r}''(t) = \mathbf{v}'(t) = \mathbf{a}(t)$ is acceleration

Example Find the velocity, speed and acceleration of a particle with the given position function. $\mathbf{r}_1(t) = t\mathbf{i} + t^2\mathbf{j} + 2\mathbf{k}$ $\mathbf{r}_2(t) = t\sin t\mathbf{i} + t\cos t\mathbf{j} + t^2\mathbf{k}$

Of course, we can use integrals of vector functions to work backwards and find a position vector given information about velocity (or acceleration.)

Problem. Find the velocity and position vectors for a particle with acceleration $\mathbf{a}(t) = 2\mathbf{i} + 6t\mathbf{j} + 12t^2\mathbf{k}$ provided $\mathbf{v}(0) = \mathbf{i}$ and $\mathbf{r}(0) = \mathbf{j} - \mathbf{k}$.

All of mechanics can be filtered through the lens of vector functions. $\mathbf{F}(t) = m\mathbf{a}(t)$.

Problems.

- 1. What force is required so that a particle of mass m has the position function $\mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$?
- 2. A force with magnitude 20 N acts directly upward from the xy-plane on an object with mass 4 kg. The object starts at the origin with initial velocity $\mathbf{v}(0) = \mathbf{i} \mathbf{j}$. Find its position function and its speed at time A projectile is fired with an initial speed of 500 m/s and angle of elevation 30°. Find (a) the range of the projectile, (b) the maximum height reached, and (c) the speed at impact.

Sometimes it is useful to resolve the acceleration vector into two components

- one in the direction of motion (i.e. in the direction of the tangent vector)
- one in the direction of the normal.

Recall that $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} =$ So $\mathbf{v} =$

Now differentiate with respect to t.

This leads to

$$\mathbf{a} = v'\mathbf{T} + \kappa v^2\mathbf{N}.$$

Example. Find the tangential and normal components of the acceleration vector $\mathbf{r}(t) = e^t \mathbf{i} + \sqrt{2}t \mathbf{j} + e^{-t} \mathbf{k}.$