Calculus \& Analytic Geometry III

Functions of Several Variables

Definition. Suppose D is a set of n-tuples of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. A real-valued function f on D is a rule that assigns a unique (single) real number

$$
w=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

to each element in D. The set D is the function's domain. The set of w-values taken on by f is the function's range. The symbol w is the dependent variable of f and f is said to be a function of the n independent variables x_{1} to x_{n}. (We also call the $x_{j} \mathrm{~s}$ the function's input variables and w the function's output variable.)

Examples.

1. The sunrise function. Given a longitude, latitude, and date, the sunrise function outputs the time that the sun rises at that location on the given date.
See http://www.sunrisesunset.com/
2. Wind-chill index. Given actual temperature and wind speed, the wind-chill index gives the apparent danger/discomfort of cold weather conditions.
See http://www.weatherimages.org/data/windchill.html.
3. $w=\sqrt{y-x^{2}}$
4. Given a location, the distance from sea level.

Connection. Compare and contrast functions of two-variables with the vector functions from the previous chapter.

Functions of $\mathbf{2}$-variables. If f is a function of 2 variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^{3} such that $z=f(x, y)$ and (x, y) is in D. (Called the surface $z=f(x, y)$. The set of all points on the plane where a function has a constant value is called a level curve of f.)

Examples. For each of the functions given below, find its domain, range, describe its level curves and its surface.

1. $f(x, y)=y-x$
2. $g(x, y)=\sqrt{25-x^{2}-y^{2}}$
3. $h(x, y)=e^{-\left(x^{2}+y^{2}\right)}$
4. $j(x, y)=\sin x+\sin y$

Can we generalize to three variables $f(x, y, z)$? What would the equivalent of level curves be?

Partial Derivatives

Partial derivatives for functions of two variables: the definitions. For a one-variable function, the derivative describes the ratio between output change and input change-when the input change is small:

$$
f^{\prime}(a) \approx \frac{\Delta f}{\Delta x}=\frac{f(a+h)-f(a)}{h}, \quad \text { when } \Delta x=h \approx 0
$$

The formal definition of the derivative is:

$$
f^{\prime}(a)=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

For a function of two variables, either one of the input variables can vary. At (a, b), the partial derivative of a function $f(x, y)$ with respect to the variable x is defined to be the limiting ratio between changes in output and changes in the input x, with the other input held constant:

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

(Note that the "prime" notation is not used for partial derivatives. The variable used for differentiation is written as a subscript.)

The partial derivative of a function $f(x, y)$ with respect to y is defined to be...

Example. For the function $G(x, y)=x^{2}+5 y^{2}$, determine the partial derivative $G_{x}(a, b)$ as follows:

$$
G_{x}(a, b)=\lim _{h \rightarrow 0} \frac{\left.\left((a+h)^{2}+5 b^{2}\right)\right)-\left(a^{2}+5 b^{2}\right)}{h}
$$

Use this same idea to determine the partial derivative $G_{y}(a, b)$

In fact, partial derivative with respect to one variable is simply an ordinary derivative where the other variables are treated as constants.

Example. Determine $f_{x}(x, y)$ and $f_{y}(x, y)$ for the following functions of two variables:

$$
f(x, y)=x y^{3} \quad g(x, y)=\frac{2 y}{y+\cos x} \quad h(x, y)=x \sin x y
$$

What does it all mean anyways?

Second Partial Derivatives

$$
\begin{aligned}
f_{x x}=\left(f_{x}\right)_{x} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \\
f_{x y}=\left(f_{x}\right)_{y} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} \\
f_{y x}=\left(f_{y}\right)_{x} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y} \\
f_{y y}=\left(f_{y}\right)_{y} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}
\end{aligned}
$$

Clairaut's Theorem. If f is define on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are continuous on D, then ...

