Spring 2008

Calculus & Analytic Geometry III

Tangent Planes and Linear Approximations

Motivating Problem. For $f(x, y) = x^3 \ln(y)$, find f_x , f_{xy} , f_y , and f_{yx} .

Find the equation of the line tangent to the curve defined by the intersection of the surface $f(x, y) = x^3 \ln y$ and the plane y = e at the point (1, e, 1).

Find the equation of the line tangent to the curve defined by the intersection of the same surface $f(x, y) = x^3 \ln y$ and the plane x = 1 at the point (1, e, 1).

What do the contour lines (level curves) for $f(x) = x^3 \ln y$ look like? What would the level curves look like if we zoomed in at a particular point—say (1, e, 1)?

The tangent plane to $f(x, y) = x^3 \ln(y)$ at the point (1, e, 1) is the equation of the plane that contains both tangent lines above.

2 Suppose that f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

When you are asked to find the local linearization of function of 2-variables, they are simply asking for the equation of the tangent plane.

Example. Find the local linearization of $f(x, y) = x^2 + y^2$ at the point (3, 4). Use it to estimate f(2.9, 4.2) and f(2, 2). Compare your answers to the true values.

 $\begin{array}{l} f(x,y) \approx 25 + 6(x-3) + 8(y-4) \\ f(2.9,4.2) \approx 26 \\ f(2,2) \approx 3 \end{array}$

The **differential**, df (or dz), at a point (a, b) is the linear function of independent variables dx and dy given by the formula

$$df = f_x(a,b)dx + f_y(a,b)dy.$$

The differential at a general point is often written as $df = f_x dx + f_y dy$.

Compute the differentials of the following functions:

 $f(x,y) = x^2 e^{5y}$ $z = x \sin(xy)$ $g(x,y) = x \cos(2x)$

Can you imagine what the differential for a function of three-variables might be? Take a stab at it for $f(x, y, z) = x^y z$.

TQS 126

Spring 2008

Quinn

CALCULUS & ANALYTIC GEOMETRY III

Directional Derivatives and the Gradient

Partial derivatives give the rate of change of a function in the directions parallel to the coordinate axes. What if we want to understand the rate of change as we travel in *any* direction?

We can always applied our original definition (looking at how the function changes between two points and seeking the limit as those points get closer and closer.)

2 The directional derivative of f at (x_0, y_0) is the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is $D_{\mathbf{u}}F(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$

if this limit exists.

Example Calculate the directional derivative of $f(x, y) = x^2 + y^2$ at (1, 0) in the direction of the vector $\mathbf{i} + \mathbf{j}$.

Ans: $\sqrt{2}$

Using the tangent plane as an approximation, we see how to calculate the directional derivative without a limit ($\mathbf{u} = \langle a, b \rangle$ is a unit vector):

$$D_{\mathbf{u}}f \approx \frac{df}{h} = \frac{f_x dx + f_y dy}{h}$$
$$= \frac{f_x ah + f_y bh}{h}$$
$$= f_x a + f_y b$$
$$= \langle f_x, f_y \rangle \cdot \langle a, b \rangle$$

Definition. If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$\nabla f = \langle f_x, f_y \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}.$$

Problems. Use the gradient to find the directional derivation of $f(x, y) = x + e^y$ at the point (1, 1) in the direction of the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 given below.

 $\mathbf{v}_1 = \langle 1, -1 \rangle$ $\mathbf{v}_2 = \mathbf{i} + 2\mathbf{j}$ $\mathbf{v}_3 = \langle 1, 3 \rangle$

Questions.

- 1. In what direction does the largest directional derivative occur?
- 2. In what direction does no change in the directional derivative occur?
- 3. If f is the function that gives altitude above sea level for any point on the earth, where on our surface is the gradient $\nabla f = \langle 0, 0 \rangle$?