TQS 126

## Calculus & Analytic Geometry III

## Application of Partial Derivatives: Finding Extreme Values

## **Relative Extremes.**

1 A function f(x, y) has a *local maximum* at (a, b) if  $f(x, y) \leq f(a, b)$  when (x, y) is near (i.e. in an open disk containing) (a, b).

A function f(x, y) has a local minimum at (a, b) if  $f(x, y) \ge f(a, b)$  when (x, y) is near (a, b).

Critical points are the candidates for local extremes. They occur where  $(f_x(a, b) = 0 \text{ or does not exists})$  AND  $(f_y(a, b) = 0 \text{ or does not exist})$ .

**Example.** Find the critical points for the following functions:

 $f(x,y) = 4 + x^3 + y^3 - 3xy \qquad \qquad g(x,y) = x^2 + 4y^2 - 2x^2y + 4$ 

3 Second Derivatives Test Suppose that (a, b) is a critical point of f(x, y) and that the second order partial derivatives are continuous in some region that contains (a, b). Dfine,

$$D = D(a, b) = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2.$$

We then have the following classifications of the critical point.

If D > 0 and  $f_{xx}(a, b) > 0$  then f(a, b) is a relative minimum. If D > 0 and  $f_{xx}(a, b) < 0$  then f(a, b) is a relative maximum. If D < 0, f(a, b) is a saddle point. If D = 0, then f(a, b) be a relative minimum, relative maximum or a saddle point. Other techniques would need to be used to classify the critical point.

Now classify the critical points found in the previous problems.





## Absolute Extremes.

Closed and bounded regions in  $\mathbb{R}^2$ . closed=contains all boundary points bounded=contained inside a disk

8 Extreme Value Theorem for functions of two variables. If f is continuous on a closed, bounded set D in  $\mathbb{R}^2$ , then f attains absolute maximum and absolute minimum values at some points in D.

Compare methods when function has one vs. two inputs:

Single input variable Find critical points in interval Test for max and min at critical points and endpoints

Problems.

Find maximum value of

$$f(x,y) = 4 + x^3 + y^3 - 3xy$$

on the disk  $x^2 + y^2 \le 1$ .

Two input variables Find critical points in region Find extreme points on the boundary Test for max and min at critical points and boundary extremes

Find the maximum value of

$$g(x,y) = x^2 + 4y^2 - 2x^2y + 4$$

on the rectangle given by  $-1 \le x \le 1$  and  $-1 \le y \le 1$ .