Calculus \& Analytic Geometry III

Optimization with constraints: Lagrange Multipliers

From last time. Finding the maximum value of $f(x, y)=4+x^{3}+y^{3}-3 x y$ on the disk $x^{2}+y^{2} \leq 1$ really boiled down to finding the maximum on the boundary $x^{2}+y^{2}=1$.

We solved for $y= \pm \sqrt{1-x^{2}}$ and substituted into the original function to get equations of one variable to maximize:

$$
\begin{array}{r}
f_{1}(x)=4+x^{3}-\left(1-x^{2}\right)^{3 / 2}+3 x\left(1-x^{2}\right)^{1 / 2} \\
\quad \text { Maximum of } 5.83 \text { at } x=-.469
\end{array}
$$

$f_{2}(x)=4+x^{3}+\left(1-x^{2}\right)^{3 / 2}-3 x\left(1-x^{2}\right)^{1 / 2}$
on interval $[-1,1]$.
Maximum of 5.83 at $x=-.883$

Geometric Approach. Given a function $f(x, y)$ (or even $f(x, y, z)$) subject to a constraint of the form $g(x, y)=k$ (or $g(x, y, z)=k$), how do the level curves of f intersect the constraint curve g ? In particular, what can you say about the largest value c such that the level curve $f(x, y)=c$ intersects the constraint curve $g(x, y)=k$?

Extremes can only occur where the level curves of f and the constraint curve just touch(i.e. tangent vectors have the same direction!)

$$
\nabla f(x, y)=\lambda \nabla g(x, y)
$$

Example.

1. Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}$ subject to $x y=1$.
2. Find the maximum and minimum values of $f(x, y)=x y$ on the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$.

Ans:

1) Minimum of 1 at $(1,1)$ or $(-1,-1)$. No maximum. 2)Minimum of -2 at $(2,-1)$ and $(-2,1)$. Maximum of 2 at $(2,1)$ and $(-2,-1)$

We can use this technique to find extreme values of function subject to two constraints. Suppose we want to find extremes for the function $f(x, y, z)$ subject to constraints $g(x, y, z)=k$ and $h(x, y, z)=$ c.

$$
\nabla f=\lambda \nabla g+\mu \nabla h
$$

Example. The plane $x+y+z=1$ cuts the cylinder $x^{2}+y^{2}=1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.

Ans:
Closest to origin: $(1,0,0)$ and $(0,1,0)$.
Farthest from origin: $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}, 1+\sqrt{2}\right)$.

