Calculus \& Analytic Geometry III

Definite Integral of a Function of Two Variables

Recall the definition of the definite integral of a function of a single variable:
Let $f(x)$ be defined on $[a, b]$ and let $x_{0}, x_{1}, \ldots, x_{n}$ be a partition of $[a, b]$. For $i=$ $1,2, \ldots, n$, let $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. Then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x .
$$

Generalizing from one variable to two.

$f(x)$ on an interval $[a, b] \quad f(x, y)$ on rectangle $R=[a, b] \times[c, d]=$
$f\left(x_{i}^{*}\right) \Delta x$ little bit of area
$f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y$ little bit of volume

Double Riemann Sum If $f(x, y) \geq 0$ the double Riemann sum approximates the volume under the surface.

(a) $n=16$

(b) $n=64$
$\iint_{R} f(x, y) d A=\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A$

(c) $n=256$

Examples.

1. Let R be the rectangle $1 \leq x \leq 1.2$ and $2 \leq y \leq 2.4$. If the values for $f(x, y)$ are as specified below, find Riemann sums which are reasonable over- and under- estimates for $\iint_{R} f(x, y) d A$ with $\Delta x=0.1$ and $\Delta y=0.2$

$y \backslash x$	1.0	1.1	1.2
2.0	5	7	10
2.2	4	6	8
2.4	3	5	6

2. Let $R=[0,1] \times[0,1]$. Use Riemann sums to make upper and lower estimates of the volume of the region above R and under the graph $z=e^{-\left(x^{2}+y^{2}\right)}$.

Other ideas generalize equally as well.

Average Value.

$$
\begin{array}{lc}
f(x) \text { on an interval }[a, b] & f(x, y) \text { on rectangle } R=[a, b] \times[c, d] \\
f_{\text {avg }}(x)=\frac{1}{b-a} \int_{a}^{b} f(x) d x & f_{\text {avg }}(x, y)=\frac{1}{(b-a)(d-c)} \iint_{R} f(x, y) d A
\end{array}
$$

Obviously we are going to want better methods for evaluating the limits of these double Riemann sums....

Writing a Double Integral as an Iterated Integral If R is a rectangle $a \leq x \leq b, c \leq y \leq d$, and f is a continuous function on R, then the integral of f over R exists and is equal to the iterated integral

$$
\iint_{R} f(x, y) d A=\int_{y=c}^{y=d}\left(\int_{x=1}^{x=b} f(x, y) d x\right) d y
$$

The expression $\int_{y=c}^{y=d}\left(\int_{x=a}^{x=b} f(x, y) d x\right) d y$ can be written $\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$.

Work from the inside out...

$$
\int_{c}^{d} \underbrace{\int_{a}^{b} f(x, y) d x}_{\text {Treat } y \text { as constant }} d y
$$

So an iterated integral is a way to transform a double integral into two definite integrals using it partial antiderivatives (that is to say we are reversing the process of partial differentiation.)

Problems. Evaluate the integrals

1. $\int_{0}^{3} \int_{0}^{4}(4 x+3 y) d x d y$
2. $\int_{0}^{4} \int_{0}^{3}(4 x+3 y) d y d x$
3. $\int_{1}^{3} \int_{0}^{4} e^{x+y} d y d x$
4. $\int_{0}^{4} \int_{1}^{3} e^{x+y} d x d y$

Fubini's Theorem. If f is continuous on the rectangle $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{z}^{b} f(x, y) d x d y
$$

Caution. Think before you leap. Sometimes the order of integration can make a huge difference in the ease of calculation. See example 3 page $962 \iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$.

Last Problem if there is time. A building is 8 meters wide and 16 meters long. It has a flat roof that is 12 meters high at one corner and 10 meters high at each of the adjacent corners. What is the volume of the building?

