Calculus \& Analytic Geometry III

Double Integrals over General Regions

Warm-up. A building is 8 meters wide and 16 meters long. It has a flat roof that is 12 meters high at one corner and 10 meters high at each of the adjacent corners. What is the volume of the building?

$$
\begin{aligned}
& z=12-\frac{1}{4} x-\frac{1}{8} y . \\
& 1280 \text { cubic meters }
\end{aligned}
$$

An important aspect of this problem was that the region we were looking over was a rectangle. What if it is not? Suppose R is a region trapped between two curves:

To calculate the area of the vertical slice, $A(x)$:

$$
A(x)=\int_{\square}^{\square} f(x, y) d y
$$

Then sum the vertical slices as x goes from a to b :

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

To calculate the area of the vertical slice, $A(y)$:

$$
A(y)=\int_{\square}^{\square} f(x, y) d x
$$

Then sum the vertical slices as y goes from c to d :

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} f(x, y) d x d y
$$

Examples.

1. Calculate $\iint_{R} \frac{\sin x}{x} d A$ where R is the triangle in the $x y$-plane bounded by the x axis, the line $y=x$ and the line $x=1$.

Ans: $1-\cos 1 \approx .46$
2. Sketch the region of integration for the integral $\int_{0}^{2} \int_{x^{2}}^{2 x}(4 x+2) d y d x$ and write an equivalent integral with the order of integration reversed.
3. For each of the (familiar) regions sketched below, create a double integral to calculate the signed volume of the 3 -dimensional solid region over the region R in the $x y$-plane and the surface $f(x, y)=y x$.

4. As time permits...calculate the double integrals (you may have to reverse the order of integration to evaluate.

$$
\int_{0}^{1} \int_{y}^{1} x^{2} e^{x y} d x d y \quad \int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x \quad \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} 6 x d y d x
$$

