Calculus \& Analytic Geometry III

Center of Mass Revisited

Definition. A lamina is thin plate, sheet, or layer.

When a lamina has uniform density ρ its center of mass is easier to find.

This is the symmetry principle. If a region is symmetric across a line ℓ then the centroid lies on ℓ.

When lamina has variable density $\rho(x, y)$ we break things up into small rectangles and assume density is constant on each small piece.

$$
\begin{aligned}
& \boldsymbol{h} \\
& M_{x}=\iint_{R} \rho(x, y) d A \\
& M_{y}=\iint_{R} x \rho(x, y) d A \\
& \boldsymbol{w}
\end{aligned}
$$

Example 1. Suppose a lamina occupies the region D bounded by the curves $y=e^{x}, y=0, x=0$, and $x=1$ and has density function $\rho(x, y)=y$. Find its mass and center of mass.

$$
\begin{aligned}
& m=\frac{1}{4}\left(e^{2}-1\right) \\
& (\bar{x}, \bar{y})=\left(\frac{e^{2}+1}{2\left(e^{2}-1\right)}, \frac{4\left(e^{3}-1\right)}{9\left(e^{2}-1\right)}\right)
\end{aligned}
$$

Note: The order of integration is the same for all three calculations m, M_{x}, and M_{y}. It can be in any order (dy dx or $d x d y)$, depending on whether the integration is best served by horizontal or vertical slices.

Another Example? Find the center of mass of the thin triangular plate bounded by the x-axis, lines $y=x$, and $y=2-x$ if $\rho(x, y)=6 x+3 y+3$.

Moments of Inertia

A body's first moments (M_{x} and M_{y}) tell about balance and torques that the body exerts about the different axes due to gravity. [mass \times distance to axis]

A body's second moments or moments of inertia (I_{x} and I_{y}) tell about energy stored as the body rotates around different axes. [mass \times square of distance to axis]

$$
\begin{array}{lr}
I_{x}=\iint_{R} y^{2} \rho(x, y) d A & \text { moment of inertia about } x \text {-axis } \\
I_{y}=\iint_{R} x^{2} \rho(x, y) d A & \text { moment of inertia about } y \text {-axis } \\
I_{0}=\iint_{R}\left(x^{2}+y^{2}\right) \rho(x, y) d A & \text { moment of inertia about the origin }
\end{array}
$$

Example 1 continued. Find the moments of inertia for the lamina bounded by the curves $y=e^{x}$, $y=0, x=0$, and $x=1$ with density function $\rho(x, y)=y$.

$$
\begin{aligned}
& I_{x}=\frac{1}{16}\left(e^{4}-1\right) \\
& I_{y}=\frac{1}{8}\left(e^{2}-1\right) \\
& \text { Note: } I_{0}=I_{x}+I_{y}
\end{aligned}
$$

The radius of gyration of a lamina with respect to an axis is the second moment's equivalent of the center of mass. Specifically the point $(\overline{\bar{x}}, \overline{\bar{y}})$ is the point at which the mass of the lamina can be concentrated without changing the moments of inertia with respect to the coordinate axes.

$$
m \overline{\bar{y}}^{2}=I_{x} \quad m \overline{\bar{x}}^{2}=I_{y}
$$

Just as

$$
m \bar{y}=M_{x} \quad m \bar{x}=M_{y}
$$

Calculus \& Analytic Geometry III

An abbreviated look at Triple Integrals

1. Evaluate $\int_{0}^{2} \int_{0}^{x} \int_{0}^{x+y} e^{x}(y+2 z) d z d y d x$.

$$
\begin{aligned}
& \text { Helps to know } \int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x \\
& \text { Ans: } 19\left(\frac{e^{2}}{3}+1\right)
\end{aligned}
$$

2. Changing the order of integration is sometimes necessary. For example try to evaluate

$$
\int_{0}^{\sqrt{\pi / 2}} \int_{x}^{\sqrt{\pi / 2}} \int_{1}^{3} \sin \left(y^{2}\right) d z d y d x
$$

Ans: 1.
3. Find the volume of the ellipsoid given by $4 x^{2}+4 y^{2}+z^{2}=16$.

