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Abstract
Cytochrome P450 (CYP) inhibition often occurs in a strongly substrate- and inhibitor-dependent
manner, with a given inhibitor affecting the metabolism of different substrates to differing degrees,
and with a given substrate responding differently to different inhibitors. Traditionally, patterns of
functional similarity and dissimilarity among substrates and inhibitors have been studied using
clustering analysis of pairwise correlation coefficients. Principal component analysis (PCA) is a
widely-used statistical technique that identifies the globally most significant independent trends in
a set of data. Here, we show that PCA can be usefully applied to study the differential effects on a
panel of CYP probe substrates by a panel of inhibitors, using published data on CYP3A4 (Kenworthy
et al., 1999) and CYP2C9 (Kumar et al., 2006). PCA can detect functional similarities among
substrates and inhibitors that are not readily apparent using pairwise clustering analysis. PCA also
allows identification of the functionally typical and atypical substrates that might be used in
combination to fully explore the CYP functional landscape.

The choice of optimal probe substrates for in vitro inhibition studies of cytochrome P450s
(CYPs) – especially relevant to pharmacokinetic predictions and in vivo-in vitro correlation –
is complicated by the diverse nature of substrate-inhibitor interactions for some of these
enzymes (Kenworthy et al., 1999; Kumar et al., 2006; Foti and Wahlstrom, 2008). A single
probe substrate can respond differently to various inhibitors; a single inhibitor can have
different effects on a panel of probe substrates. The differential behavior of substrates and
inhibitors with drug-metabolizing CYPs is presumably due to their promiscuity and catalytic
allosterism (Guengerich, 2001; Atkins, 2006; Nath and Atkins, 2008).

Two recent studies provide valuable insight into the varied nature of substrate-inhibitor
interactions, and into the patterns of similarity among substrates and inhibitors: Houston and
co-workers (Kenworthy et al., 1999) studied the effects of 34 different inhibitors on the
metabolism of 10 probe substrates by CYP3A4. Subsequently, Tracy and co-workers (Kumar
et al., 2006) studied how 21 different inhibitors affected the metabolism of 5 probe substrates
by the CYP2C9 variants *1 and *3. Both groups used hierarchical clustering to analyze relative
similarity among their respective panels of substrates and inhibitors; here, we show how
principal component analysis (PCA), applied to both groups' datasets, can serve as a powerful
global alternative to clustering analysis. This application of PCA is similar to its previous use
in functionally characterizing CYP102 variants generated by directed evolution (Bloom et al.,
2007).

PCA (Wall et al., 2003) is a mathematical technique to extract the most significant trends in a
set of observations. PCA relies on the assumption that the most significant trends (called
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‘principal components’ or PCs) are those that show the greatest covariance between different
observables over multiple observations. For a data set with n observables, PCs can be thought
of as vectors in n-dimensional space, and each observation can be transformed from the original
observable-space to PC-space, where its coordinates (scores) reflect how much each
component contributes to the observation. PCs are ranked in order of variance (i.e.,
significance): because there are typically more observables than significant PCs, PCA serves
as a multidimensional scaling technique. The locations of different observations in component-
space provide a quick and global comparison of relative similarity and dissimilarity.

Our intent is to demonstrate how PCA can be used to empirically analyze functional patterns
among CYP substrates and inhibitors. We should emphasize that a compound's score in a
particular PC does not necessarily correlate with any one of its functional, physical or chemical
characteristics. More advanced statistical techniques, such as common factor analysis or partial
least squares regression, can be used to explain how specific characteristics of compounds
contribute to their scores, but such analysis is beyond the scope of this paper.

Methods
CYP3A4 data from Kenworthy et al. consist of relative (%) inhibition of 12 probe reactions
by single concentrations of 34 different inhibitors, and are presented in Table 1. CYP2C9 data
from Kumar et al. consist of KI values measured for 21 inhibitors using 5 probe substrates, for
allelic variants CYP2C9*1 and CYP2C9*3, presented in Table 2 respectively. To study the
functional similarity of substrates, data were entered into a matrix with each row representing
a probe substrate and each column representing an inhibitor. PCA was performed using a script,
available upon request, in the Python programming language with the SciPy module (Jones et
al., 2001). Briefly: columns were mean-centered, and compact singular value decomposition
was performed on the resulting matrix using the linalg.svd () function of SciPy. The
matrix of PC scores for all substrates is given by the product of the left singular vector matrix
and the singular value matrix. To study the functional similarity of inhibitors, the matrix was
transposed so that rows represented inhibitors and each column represented a probe substrate,
and then PCA was performed as described above.

Results and Discussion
CYP3A4 Substrates

PCA of CYP3A4 probe substrate responses to inhibitors (Fig. 1a) shows all 11 probe substrates
plotted in terms of their scores in the first two PCs. (There are 12 points because Kenworthy
et al. monitored two different products from terfenadine – C-hydroxylation (TFA) and N-
demethylation (TFZ). Additionally, the authors used seven of their probe substrates (TS:
testosterone, CY: cyclosporine, ER: erythromycin, DZ: diazepam, DX: dextromethorphan, NF:
nifedipine, and terfenadine) as inhibitors as well, approximating the extent of ‘inhibition’ of a
probe substrate by itself as the percent maximal activity at 30 μM substrate concentration. Any
resulting errors should be minor in a global analysis such as PCA.) It is immediately obvious
that the two fluorescent substrates ethoxyresorufin and benzyloxyresorufin (EROD and
BROD) are markedly different in their response from the other nine probe substrates. This is
borne out by the raw data in Table 1, with BROD in particular showing marked activation by
several compounds that inhibit all or most of the other probe substrates, and EROD showing
a weaker response in general to most compounds than the nine other probes.

Kenworthy et al. correctly recognized that these two fluorescent substrates are highly dissimilar
from the other nine probe substrates, and therefore may not be representative of CYP3A4
substrates in general. To more closely examine the relationships between the nine remaining
probe substrates (i.e., the ten remaining probe reactions), we therefore eliminated all data for

Nath and Atkins Page 2

Drug Metab Dispos. Author manuscript; available in PMC 2008 November 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



EROD and BROD from the dataset. The first three PCs of the remaining data (Fig. 1b) together
describe 56.1% of the variance in the data – meaning that analysis of even less significant PCs
can provide additional useful information. Nonetheless, scores in PCs 1-3 show a central cluster
(TS, CY, ER, MZ: midazolam, and DZ). Slightly removed, and similar to each other, are the
terfenadine reactions (TFA, TFZ). Further out are DX, NF and triazolam (TZ), all about
equidistant from the central cluster. The PCA results suggest that the experimental use of any
of the central cluster (as representative substrates) could be complemented by also using DX,
NF and/or TZ to better explore CYP3A4 functional space.

Compared to the hierarchical clustering (Fig. 1c) based on pairwise correlation coefficients
presented by Kenworthy et al., PCA provides a more global and comprehensive picture of the
patterns of similarity and dissimilarity between various probe substrates. For example, pairwise
clustering fails to capture the similarity in responses between TS and MZ, or the distance
between DX and DZ. (Part of the reason that the authors underestimate the dissimilarity of DX
and TZ from other substrates is that their clustering calculations ignored activation, although
DX and TZ were activated by several of the ‘inhibitors’ in the panel.)

CYP3A4 Inhibitors
When the input data are transposed, PCA illustrates how various CYP3A4 inhibitors/effectors
relate to each other functionally. As one might expect, the greatest amount of variance in the
transposed data set is explained by the average extent of inhibition by each member of the
inhibitor panel – the relevant [I]/KI with [I] = 30 μM, under assay conditions. This is clearly
demonstrated by the very high correlation (R2 = 0.9999, Fig. 2a) between the average inhibition
% and inhibitors' scores in the first PC. Therefore, the most useful information about functional
differences is contained in PCs 2-4. (PCs 1-4 account for 75.6% of variance.) From plots (Fig.
2b) of these three PCs, we see most members of the inhibitor panel cluster together, with
testosterone and haloperidol (and perhaps diazepam and quinidine) as outliers. Compounds in
the center of the cluster, such as cyclosporine or ketoconazole, may be good prototypical
CYP3A4 inhibitors, while outliers can be used as probes of atypical heterotropic effects.

CYP2C9 Substrates
KI values of 21 substrates using five probe substrates of CYP2C9.1 and .3 presented by Kumar
et al. are shown in Table 2. PCs 1-3 (>95% of variance) from these data, showing how probe
substrates cluster in terms of their response to the inhibitor panel, are presented in Fig. 3 a and
b. Interestingly, the single sequence alteration (Ile359Leu) between the *1 and *3 allelic
variants results in markedly different probe substrate responses: for CYP2C9.1, phenytoin,
tolbutamide and diclofenac form a distinct cluster with flurbiprofen and warfarin as outliers,
as observed using pairwise clustering by Kumar et al. In contrast, the five substrates do not
form a distinct cluster for CYP2C9.3 and are more evenly distributed in functional space.

CYP2C9 Inhibitors
PCs 1-3 (>95% of variance) of the transposed CYP2C9 data (Fig. 3 c and d) illustrate the
functional relationships between the various inhibitors. Analogous to the CYP3A4 result, the
greatest fraction of variance is explained by each inhibitor's potency: this is reflected in the
high correlation between KI and PC1 scores: R2 = 0.9906 and 0.9997 respectively for
CYP2C9.1 and .3. Both isoforms show a large central cluster comprising most of the panel,
implying relatively similar patterns of inhibition; our analysis supports the continued use of
sulfaphenazole as a prototypical CYP2C9 inhibitor, since it is located in this central cluster.
Quinine and thiobendazole (and perhaps indomethacin) are outliers. There is in general less
variation in inhibitor function between allelic variants than was observed with probe substrates.
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In conclusion, we have shown how PCA can be used to globally compare the functional
characteristics of CYP substrates and inhibitors. The global nature of PCA allows the
recognition of similarities or dissimilarities that may not be evident in traditional pairwise
clustering analysis; similarly, mapping a new drug-like compound into functional space (using
known substrate or inhibitor panels) could augment predictions of allosteric behavior and drug-
drug interactions. As an important caveat, PCA is sensitive to systematic biases in the original
data, and its meaningful application to in vitro metabolism studies relies on the type of high-
quality, consistent and extensive datasets generated by Kenworthy et al. and Kumar et al.
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MZ  
midazolam

TZ  
triazolam

TFA  
terfenadine (C-hydroxylation)

TFZ  
terfenadine (N-demethylation)

ER  
erythromycin

CY  
cyclosporin

TS  
testosterone

NF  
nifedipine

BROD  
benzyloxyresorufin

EROD  
ethoxyresorufin
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Figure 1.
a) Scores in the 1st and 2nd-most significant PCs for 12 CYP3A4 probe reactions. (The units
of both axes do not have direct physical relevance, and should be taken to represent only the
relative similarity of the various probe reactions.) Fluorescent substrates BROD and EROD
are markedly different functionally from non-fluorescent substrates. b) PCA with fluorescent
substrates BROD and EROD omitted, showing scores for the 1st, 2nd and 3rd-most significant
PCs. DX, TS, CY, ER and MZ form a central cluster that may comprise the best-representative
substrates of CYP3A4. c) Hierarchical clustering analysis for pairwise correlation coefficients
of inhibition, adapted with permission from Fig. 3 of Kenworthy et al. (1999).
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Figure 2.
PCA of transposed CYP3A4 inhibition/activation data from ref. (Kenworthy et al., 1999),
showing how inhibitors from the panel cluster in functional space. Only selected inhibitors
(black dots) are labeled. a) Inhibitor score PC1 is almost entirely determined by the average
inhibition, a function of the average [I]/KI for each inhibitor ([I] = 30 μM in the experimental
conditions). b) Functionally relevant characteristics of the various inhibitors are encapsulated
in the 2nd through 4th PCs. Under experimental conditions, testosterone is the most atypical
inhibitor in the panel, followed by haloperidol.
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Figure 3.
PCA of 21 KI values using 5 probe substrates for CYP2C9. a,b) PCA showing relationships
between probe substrates for allelic variant CYP2C9.1 and .3 respectively. Tolbutamide,
phenytoin and diclofenac form an apparent cluster for .1, but all five substrates are more evenly
dispersed for .3. c,d) PCA of transposed data sets, showing the relative positions of inhibitors
in functional space for CYP2C9 allelic variants .1 and .3 respectively. The recovered functional
mapping is quite similar for both variants: quinine and thiobendazole are distinct outliers in
both cases.
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