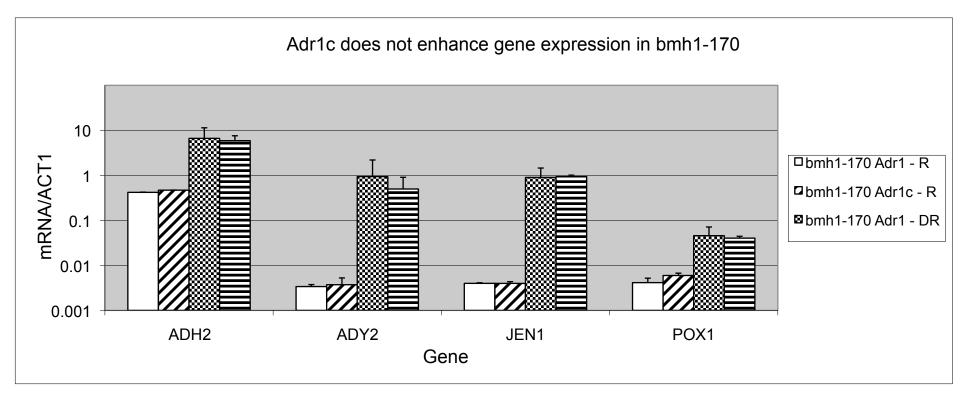
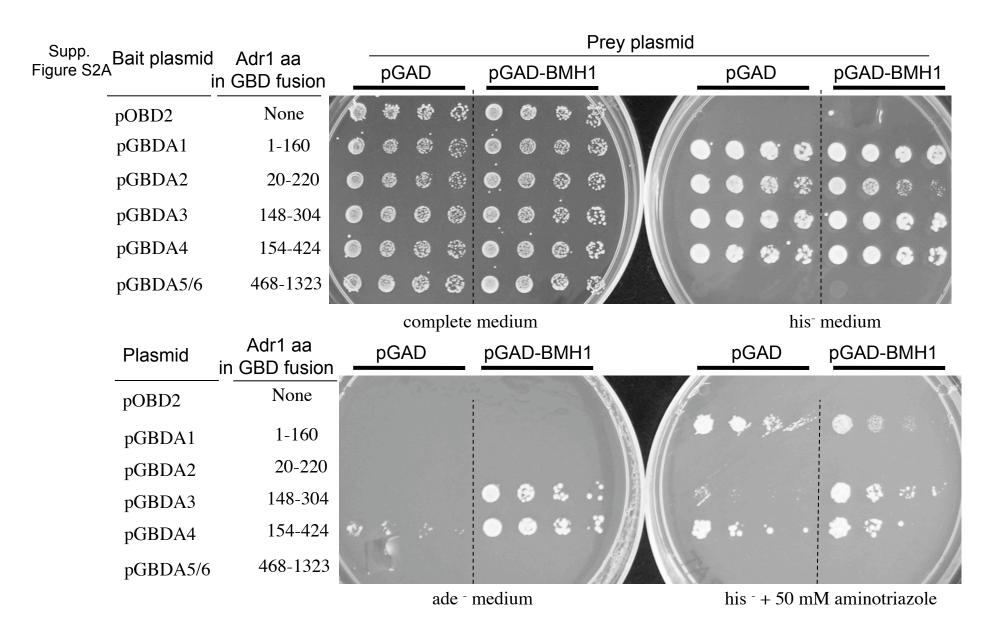
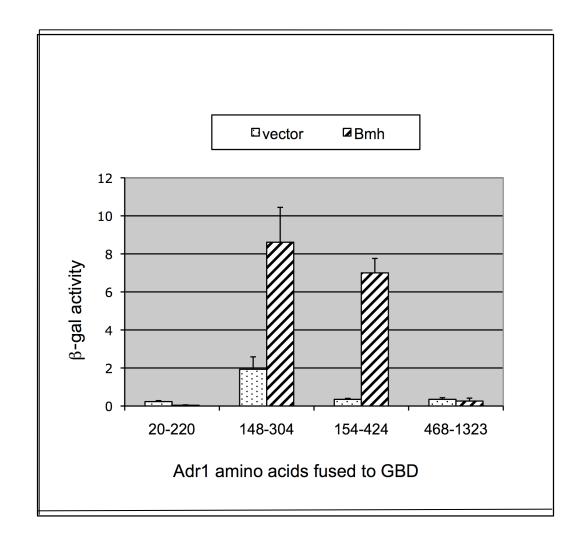

Supp Figure 1A

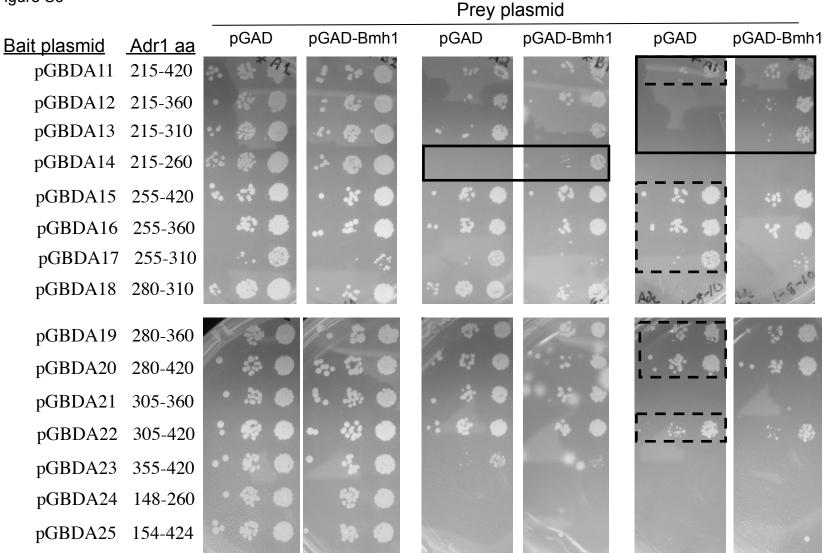


Supplementary Figure S1A. Snf1-dependence of Adr1-dependent gene expression and Adr1 binding. A. Strains YLL1087 $bmh2\Delta$ bmh1-170 SNF1 and SRY69 ($snf1\Delta$::natmx $bmh2\Delta$ bmh1-170) were grown at 30°C in complete medium with 3% glucose to an $A_{600}\sim1$. A portion of the culture was collected and the remainder of the culture was centrifuged and the pelleted cells were resuspended in derepressing (DR) medium containing 0.05% glucose and shaken at 30°C for 6 hours (DR). After 6 hours cells were collected, RNA was isolated, cDNA was prepared and quantitative RT-PCR (qRT-PCR) was performed and analyzed as described in Materials and Methods.


Supp Figure 1B


Supp. Fig. S1B. Chromatin immunoprecipitation (ChIP) of Adr1-HA and Adr1 (S230A)-HA in SNF1 and $snf1\Delta$ strains. Strains EAY25 (adr1 Δ bmh1-170 SNF1) and EAY29 (adr1 Δ bmh1-170 $snf1\Delta$) carrying pKD16-HA (ADR1) and pKD14-HA (ADR1-S230A) were grown in repressing medium selective for the TRP1 plasmids. ChIP was performed as described in Materials and Methods.

Supp. Fig. S1C. *ADH2* expression is not enhanced by Adr1° in a strain lacking Bmh activity. Strain YLL1087 (*bmh2*\(\Delta\) *bmh1-170*) transformed with either pKD16 (WT *ADR1*) or pKD14 (*ADR1*°) (Supp. Table 2) was grown in synthetic medium containing 3% glucose and 0.2% casamino acids to an OD600~1. Cells were collected, RNA was isolated, cDNA was prepared and quantitative RT-PCR (qRT-PCR) was performed as described in Materials and Methods.


Supp. Figure S2A. Two-hybrid interaction of GBD-Adr1 with GAD-Bmh1. Yeast two-hybrid assays were performed using strain TYY304 (GAL1-HIS3 GAL2-ADE2 GAL7-lacZ) with one of the pGBDA plasmids (TRP+) and either pGAD (LEU+) or pGAD-BMH1 (pKD134, LEU+). Yeast were spotted onto the following selective plates to assess interactions between GBD-Adr1 and GAD-Bmh1: trp- leu- (complete), trp- leu-his- (his-), trp- leu- ade- (ade-), and trp- leu- his- containing 50 mM 3-aminotriazole (his- + 50 mM aminotriazole).

Supp. Figure S2B. Two-hybrid interactions assayed by expression of GAL7-lacZ. The strains described in Supp Figure 1A were assayed for β -galactosidase activity and the results are plotted in Miller units \pm 1 SD.

pOBD2

none

Supp. Figure S3. Two-hybrid assays using strain TYY304 expressing GBD-Adr1 fusion proteins (pGBDA) and either GAD-Bmh1 (pKD134) or GAD (pGAD-C1). Strains that activate transcription in the absence of GBD-Bmh1 are enclosed in boxes with dashed lines and strains with a two-hybrid interaction with GAD-Bmh1 are enclosed in boxes with solid lines.

trp-leu-

trp-leu-his-

trp-leu- ade-

Supp. Figure S4.

Protein	Yeast Species	Location	Conserved Region 1	Conserved Region 2
Rsf2	S. cerevisiae	332-395	TPSSMHKTKRHASFSASSAMTYMSSS-	NFELVEDAPHQVGFSTPQMTAKQLMESVSE
YML081W	S. cerevisiae	221-282	IPTKSKRHASFSASSAFTYSSDN-	ELQESIPHQVGFSTPQLTAQQLIENAIE
643.20	S. bayanus	222-285	IPTKYKRHASFSASSAFTYSSDN-	ELQESVPHQVGFSTPQLTAQQLIENAIE
703.23	S. castellii	249-318	SVTAATISKRHASFSAASAFTYVQDNN	EFQFPADIPHQVGFSTPQLSAQQLIEKVTE
B14894	Z. rouxii	223-283	APPKRRKRHASFSASSAFSYVNDS-	EME-PQEGPHQVGFSTPQLTAQQLMEKAVE
H04213	C. glabrata	219-288	LSVPASRNKRHASFSASSAFTYFPDNV	IEDLGEGIPHLVGFSTPQLSAQELIRKVMQ
16621	K. waltii	232-292	AEERHHKRKRHASFSASSSITYTQAK-	EIPDIPHQVGFSTPQLSAQELVEKALE
D18062	K. thermotolerans	189-245	LEERQQKRKRHASFSASSSITYTQAK-	DIPDIPHQVGFSTPQLSAQELVEKALE
G18062	S. kluyveri	220-279	-RDKPRKRKRHASFSASSALTYTQAK-	EMADIPHQVGFSTPQLTAQGLMEKAMM
B04477	K. lactis	239-295	ASNQPKKRKRHASFSASTNVSYTQKK-	ELNDIPHQVGFSTPQLTAQELFDKALE
AER159C	A. gossypii	216-275	ESKAPK-RKRHASFSAAHTLSYVQEK-	EMSDIPHQVSFSTPQMTAQQLFERATK
1001.1	K. polysporus	168-257	LKPPVQKRKRHASFSASNAFTYRPNNV	NQDLSQDVPHQVGFSTPQLSANRLLEKIFN
719.68	S. castellii	224-288	FASSTRGRQRHASFSAAGSYTYSSTN-	EPSPSTEAPHQVGFSTPQLTTKQLMDKAME
			******	** * ***** * * * * * * * * * * * * * * *
			/	/
			Í/BULAFA LAGAETÚ	BUALARATRAL TIANI T
			KUHACLCASSACIV	DHUNGERIDU INDRIW
				TININI JI NESAMELE
			CALAWIIA INIA	IIILIŠIVII MMVTAR <mark>i</mark> l

Supp. Figure S4. Conserved motifs in the regulatory domain of Rsf2. Rsf2 orthologs were recovered from the Gene Order Browser (31) and aligned using ClustalW 2.0 WWW service at the European Bioinformatics Institute (http://www.ebi.ac.uk/Tools/clustalw2/; 37, 45). Amino acid consensus logos were created using WebLogo 3.0 (http://weblogo.threeplusone.com/create.cgi) (16).