Major Reference Works and OnlineBooks
Major Reference Works

- 13 titles online today (including 7 in chemistry)
- 12 more scheduled by the end of the year (including 6 in chemistry)
Basic Search | Advanced Search

Select fields and enter search terms:

- Search All Text
- Article Titles
- Author
- Keywords
- DOI

AND

Begin Search | Reset

Restrict & order your search

- Restrict search by product:
 - All of Molecular Biology and Medicine
 - Molecular Biology
 - Molecular Medicine

- Restrict the search by subject (select all relevant):
 - Antibiotics
 - Binding Interactions (Ligand Binding, Allosteria)
 - Blood Clotting

- Restrict the search to article dates:
Acetylene from Hydrocarbons
Richard E. Gannon, Textron Defense Systems

1. Manufacture From Hydrocarbons

Acetylene production in Japan and Eastern Europe is still based on the calcium carbide process, the large production in the United States and Western Europe now rely on hydrocarbons as the feedstock. Now more than 80% of the acetylene produced in the United States and Western Europe is derived from hydrocarbons, mainly natural gas or as a coproduct in the production of ethylene. In Russia about 40% of the acetylene produced is from natural gas.

Development of the modern processes for the manufacture of acetylene from hydrocarbons began in the 1920s when Badische Anilin- und Soda-Fabrik (BASF) initiated an intensive research program based on Berthelot’s early (1860) laboratory investigations on the conversion of low molecular weight aliphatic hydrocarbons to acetylene by means of thermal cracking. BASF’s development of the electric arc process led to the first commercial plant for the manufacture of acetylene from hydrocarbons. This plant was put into operation at Chemische Werke Hüls in Germany in 1940. In the United States, commercial manufacture of acetylene from hydrocarbons began in the early 1950s; expansion was rapid until the mid to late 1960s, when acetylene was gradually supplanted by cheaper ethylene as the main petrochemical intermediate.

1.1. Theory

The hydrocarbon to acetylene processes that have been developed to commercial or pilot-plant scale must recognize and take advantage of the unique thermodynamic properties of acetylene. As the free energy data shown in Figure 1 indicate, the common paraffinic and olefinic hydrocarbons are more stable than acetylene at ordinary temperatures. As the temperature increased, the free energy of the paraffins and olefins become positive while that of the acetylene decreases, until at >140°C acetylene is the most stable of the common hydrocarbons. However, it is also evident that, although it has the lowest free energy of the hydrocarbons at high temperature, it is still unstable in relation to its elements C and H₂. Thus it is necessary to heat the feedstock extremely fast to minimize its decomposition to its elements and, for a similar reason, the quench must be performed rapidly to keep the temperature of the acetylene as low as possible.
Color Image Processing

Figure 17. Color charts. Hue varies with angle according to Fig. 13. Left: constant saturation and intensity. Middle: constant intensity, saturation goes to zero at the center. Right: constant saturation, intensity goes to zero at the center.

Encyclopedia of Imaging Science and Technology
Published by John Wiley & Sons, Inc.
Major Reference Works

- Kirk-Othmer Encyclopedia of Chemical Technology
- Ullmann’s Encyclopedia of Industrial Chemistry
Major Reference Works

- Patty’s Industrial Hygiene and Toxicology
 - Named an AAP “Best Internet-Based Electronic Product”
- Encyclopedia of Reagents for Organic Synthesis (EROS)
ENCYCLOPEDIA OF

Molecular Biology AND
Molecular Medicine

This Web site Copyright © 2001 by John Wiley & Sons, Inc. All rights reserved.
Major Reference Works

- Upcoming: Database of organic chemistry
 - Existing Wiley publications
 - Growing over time
 - Stop by the booth at ACS for a demo
Major Reference Works

- Pricing
 - Annual site licenses
 - Based on FTEs
 - Prices start at $50/yr
 - Kirk & Ullmann’s start at $900/yr
Current Protocols

- Current Protocols in Food Analytical Chemistry
- Current Protocols in Nucleic Acid Chemistry
- 11 other CP titles
New! OnlineBooks

- First db of its kind from an STM publisher
- Straightforward interface
- Terrific depth and breadth of content
- “Unreservedly recommended” by LJ
New! OnlineBooks

- Nearly 300 print works in three “libraries”:
 - Chemistry
 - Life Sciences & Medicine
 - Electrical Engineering & Telecommunications

- Subsets of each library also available; you subscribe to specific disciplines your users need
Browse titles alphabetically

Wiley InterScience Online Books

Chemistry Library
- Analytical Chemistry, Physical Chemistry and Spectroscopy Collection
- Organic Chemistry and Biochemistry Collection
- Polymers, Materials Science and Industrial Chemistry Collection

Electrical Engineering and Telecommunications Library
- Communications Technology Collection
- Electronic and Electrical Engineering Collection
- Wireless Communications Collection

Life and Medical Sciences Library
- Medical Sciences Collection
- Molecular Biology Collection
- Pharmaceutical Medicine Collection

[Wiley InterScience Home Page] [Personal Home Page] [Journal Finder] [Book Finder] [Search Wiley InterScience] [Reference Works] [Help] [Contact Us] [Logout]
Table of Contents

Analytical Chemistry, Physical Chemistry and Spectroscopy

Advances in Electrochemical Science and Engineering, Volume 7

Editor(s): Prof. Richard C. Alkire, Prof. Dieter M. Kolb

ISBN: 3527600264 (Electronic) 3527298304 (Print)
Copyright © 2001 Wiley-VCH Verlag GmbH

<table>
<thead>
<tr>
<th>i-ix</th>
<th>Frontmatter and Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Published Online: 18 Dec 2001</td>
</tr>
<tr>
<td></td>
<td>DOI 10.1002/3527600264.fmatter_insub</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-105</th>
<th>Chapter 1: Electrochemical Atomic Layer Epitaxy (EC-ALE): Nanoscale Control in the Electrodeposition of Compound Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>John L. Stickney</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Published Online: 18 Dec 2001</td>
</tr>
<tr>
<td></td>
<td>DOI 10.1002/3527600264.ch1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>107-150</th>
<th>Chapter 2: The Initial Stages of Metal Deposition as Viewed by Scanning Tunneling Microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dieter M. Kolb</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Published Online: 18 Dec 2001</td>
</tr>
<tr>
<td></td>
<td>DOI 10.1002/3527600264.ch2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>151-191</th>
<th>Chapter 3: Structure and Pattern Formation in Electrodeposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dale P. Barkey</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Published Online: 18 Dec 2001</td>
</tr>
<tr>
<td></td>
<td>DOI 10.1002/3527600264.ch3</td>
</tr>
</tbody>
</table>
OnlineBooks

- MARC records coming soon
- Old editions are archived
- Searching and browsing ToCs and abstracts is free to all users
OnlineBooks Discounts & Trials

- Discounts available for subscribers to multiple collections
- Special offer through July 31st—40% off second library
- Free trials available
Wiley InterScience

- www.interscience.wiley.com
- Booth # 747
Major Reference Works and OnlineBooks