Burgers’ Equation Plus Advection

1 Introduction

Consider the nonlinear system

\[q = \begin{bmatrix} u \\ v \end{bmatrix}, \quad f(q) = \begin{bmatrix} \frac{1}{2}(u^2) \\ (u + 1)v \end{bmatrix}. \quad (1) \]

This is simply Burgers’ equation

\[u_t + \frac{1}{2}(u^2)_x = 0 \quad (2) \]

coupled to conservative advection

\[v_t + ((u + 1)v)_x = 0 \quad (3) \]

But note that the advection speed comes from the solution to Burgers’ equation, so there is a 1-way coupling.

2 Analysis as two scalar equations

We can get a feel for what happens by consider the two scalar equations separately. Solving the Burgers’ equation (2) gives a rarefaction wave if \(u_l < u_r \) or a shock wave with speed

\[s = \frac{1}{2}(u_l + u_r) \]

in the case \(u_l > u_r \).

The advection equation (3) can be rewritten as

\[v_t + ((u + 1)v)_x = 0 \]

and characteristic theory shows that

\[\frac{d}{dt} v(X(t), t) = -u_x(X(t), t)v(X(t), t) \]

along the curve \(X'(t) = u(X(t), t) + 1 \). In regions where \(u \) is constant, the characteristics are straight lines, and \(u_x = 0 \) implies that \(v \) is constant.

If the solution \(u \) has a shock wave, then the source term in \(v \) contains a delta function. If the delta moves a different speed than advection velocity, this leads to a jump in \(v \) at the shock location.

If the shock moves at same speed as the advection velocity then the delta function is stationary relative to advecting \(v \) and we expect blow up in the solution for \(v(x, t) \). More generally, if the advection speed \(u_l + 1 \) just to the left of the shock and the speed \(u_r + 1 \) just to the right of the shock satisfy

\[u_l + 1 > \frac{1}{2}(u_l + u_r) > u_r + 1 \]

then the characteristics of advection would be impinging on the shock from both sides and we’d expect blow up of \(v \). This happens if \(u_r \leq u_l - 2 \).
3 Analysis as a system

Now let’s analyse the system (1) as a system of equations. The Jacobian matrix is

\[f'(q) = \begin{bmatrix} u & 0 \\ v & u + 1 \end{bmatrix}. \]

The system is always hyperbolic since \(u \neq u + 1 \) and so the matrix can always be diagonalized. The eigenvalues and eigenvectors are

- \(\lambda^1 = u, \ r^1 = \begin{bmatrix} 1 \\ -v \end{bmatrix}, \ \nabla \lambda^1 \cdot r^1 \equiv 1, \ genuinely \ nonlinear \)

and

- \(\lambda^2 = u + 1, \ r^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \nabla \lambda^2 \cdot r^2 \equiv 0, \ linearly \ degenerate \)

3.1 Integral curves and rarefaction waves

The integral curves of \(r^1 \) are curves in the phase plane parameterized by \(\xi \) satisfying

\[\hat{u}'(\xi) = 0 \ \Rightarrow \ \hat{u}(\xi) = u_* \]
\[\hat{v}'(\xi) = v(\xi) \ \Rightarrow \ \hat{v}(\xi) = v_* e^{\xi} \]

Since \(u \) is constant, the integral curves are vertical lines in the \(u-v \) phase plane. These lines are also contours of \(\lambda^2 \) (which we expect since this field is linearly degenerate). We’ll see later these are also the Hugoniot loci for 2-waves.

We can solve these ODEs to obtain

\[\hat{u}'(\xi) = 1 \ \Rightarrow \ \hat{u}(\xi) = u_* + \xi \ \Rightarrow \ \xi = \hat{u} - u_* \]
\[\hat{v}'(\xi) = -v(\xi) \ \Rightarrow \ \hat{v}(\xi) = v_* e^{-\xi} \ \Rightarrow \ \hat{v} = v_* e^{u_* - \hat{u}}. \]

3.2 Hugoniot loci and shock waves

If \(u_l > u_r \) then we expect a shock in the 1-wave, so we need to find the set of states \(q \) we can connect to some \(q_* \) by a discontinuity satisfying the Rankine-Hugoniot jump condition

\[f(q) - f(q_*) = s(q - q_*) \] \((4) \)

The first equation in this system gives:

\[\frac{1}{2}(u^2 - u_*^2) = s(u - u_*) \ \Rightarrow \ \frac{1}{2}(u + u_*)(u - u_*) = s(u - u_*). \] \((5) \)

One solution is

\(u = u_* \) (and jump in \(v \) arbitrary) \ \Rightarrow \ \text{vertical lines} \)

These are Hugoniot loci for 2-waves. The speed of such a discontinuity can be determined from the second equation in the system (4),

\[(u + 1)v - (u_* + 1)v_* = s(v - v_*). \] \((6) \)
When \(u = u_s \) this reduces to give the speed \(s^2 = u_s + 1 \). These waves are discontinuities in \(v \) alone, propagating with the advection velocity \(u_s + 1 \).

The second possible solution to (5) is

\[
 s = s^1 = \frac{1}{2} (u + u_s).
\]

This is the expected shock speed from Burgers’ equation. The relation between \(v \) and \(u \) across such a shock can be determined from the second equation of R-H relation, (6), with the above value of \(s \):

\[
 (u + 1)v - (u_s - 1)v_s = \frac{1}{2} (u + u_s)(v - v_s)
\]

\[
 \Rightarrow \quad v = \left(\frac{1 + \frac{1}{2}(u_s - u)}{1 - \frac{1}{2}(u_s - u)} \right) v_s \approx e^{u_s - u} v_s
\]

Note that the Hugoniot locus agrees to \(O(|u_s - u|^3) \) with integral curve, as illustrated in Figure 1.

![Image of integral curves and shock Hugoniot](image)

Figure 1: Comparison of integral curves of \(r^1(q) \) and shock Hugoniot.

But note that \(v \) blows up along a Hugoniot locus as \(u \to u_s - 2 \):

\[
 v = \left(\frac{1 + \frac{1}{2}(u_s - u)}{1 - \frac{1}{2}(u_s - u)} \right) v_s \to \infty \quad \text{as} \quad u \to u_s - 2
\]

This is not surprising from the discussion of Section 2.

4 Solution to the Riemann problem

For general \(q_l = (u_l, v_l) \) and \(q_r = (u_r, v_r) \), the Riemann problem has a classical solution only if \(u_r > u_l - 2 \). Otherwise there is no solution because \(v \) concentrates into a delta function along the shock path \(X(t) = \frac{1}{2}(u_l + u_r)t \).
For cases where there is a Riemann solution, it consists of either a shock followed by a contact discontinuity (if $u_l > u_r > u_l - 2$) or a rarefaction wave followed by a contact discontinuity (if $u_l < u_r$).

4.1 Rarefaction wave solutions

In the case $u_l < u_r$ the Riemann solution consists of a rarefaction wave connecting q_l to $q_m = (u_m, v_m)$ where $u_m = u_r$ and

$$v_m = v_l e^{u_l – u_r}.$$

The left and right edges of the rarefaction fan propagate at velocities u_l and u_r respectively (recall that in u this is a standard rarefaction wave for Burgers’ equation). The rarefaction fan is followed by a faster moving contact discontinuity with speed $s^2 = u_r + 1$ across which u is constant and v jumps from v_m to v_r.

Typical cases are shown in Figures 2 and 3. The case shown in 4 contains a transonic rarefaction wave since $u_l < 0 < u_r$.

Figure 2: Riemann solution consisting of a rarefaction wave followed by a contact discontinuity. $q_l = (1, 4)$ and $q_r = (2, -3)$.
Figure 3: Riemann solution consisting of a rarefaction wave followed by a contact discontinuity. $q_l = (-3, 4)$ and $q_r = (-1.5, 2)$.

Figure 4: Riemann solution consisting of a transonic rarefaction wave followed by a contact discontinuity. $q_l = (-2, 2)$ and $q_r = (2, 3)$.
4.2 Shock wave solutions

If $u_l > u_r > u_l - 2$ then there is a shock with speed $s^1 = \frac{1}{2}(u_l + u_r)$ connecting q_l to $q_m = (u_m, v_m)$ where $u_m = u_r$ and

\[
v_m = \left(\frac{1 + \frac{1}{2}(u_l - u_r)}{1 - \frac{1}{2}(u_l - u_r)} \right) v_l.
\]

A typical case is shown in Figure 5. Figure 6 shows a case where u_r is closer to $u_l - 2$. Note that v_m is much larger in this case.

5 Clawpack and Python code

The Clawpack code is in subdirectory burgersadv/clawcode.

To best view the codes and plots that result from test runs, move this directory burgersadv to $CLAW/myclaw, start the Clawpack python webserver, and then point your browser to burgersadv/README.html.

The subdirectory burgersadv/python contains a Python module burgersadv.py that is used to create the figures in this document. It can also be used to experiment further with the structure of Riemann solutions.
Figure 6: Riemann solution consisting of a shock followed by a contact discontinuity. $q_l = (3, 2)$ and $q_r = (1.2, 3)$. In this case note that v_m is very large.